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Abstract

New results on the stability of large antagonistic systems on
complex networks: a random matrix approach

Andrea Marcello Mambuca

King’s College London

We study the local stability of dynamical systems on complex networks with a random

matrix approach. In this approach the Jacobian of the linearised dynamics at the fixed

points is described by a sparse random matrix. Inspired by the ecological food webs,

we consider degrees of freedom that have pairwise correlated interactions that can be

predator-prey, competitive, or mutualistic. Matrices where all interactions are of the

predator-prey type define the antagonistic ensemble, while matrices with all the three

kinds of interactions define the mixture ensemble. We develop an exact theory to eval-

uate the spectral properties of infinitely large sparse random matrices with pairwise

correlated interactions, and use this theory to infer the system stability. This theory

shows that the kind of the interactions plays a major role for the stability of sparse

systems. In particular, we find that the leading eigenvalue of infinitely large antagonistic

matrices is finite, while the leading eigenvalue of mixture ones is not. This implies that

the fixed points of infinitely large antagonistic matrices can be stable, while mixture ones

are unstable. In addition, it emerges that degree fluctuations in the network topology

typically provide further stabilising effects for infinitely large antagonistic systems. Fi-

nally, we find a peculiar behaviour in the spectra of antagonistic matrices at small values

of the mean degree, which we denominate the reentrance effect. The leading eigenvalue

is imaginary in this case and consequently, as illustrated, the dynamical recovery to a

fixed point of the corresponding antagonistic system is typically oscillatory. The reen-

trance effect characterises a continuous phase transition from a region where the recovery

is oscillatory for small enough mean degrees to a phase with a monotonic response for

larger connectivities, as instead the leading eigenvalue is real.
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Chapter 1

Introduction and Motivations

Real-world systems in many areas can be described as complex systems, characterised by

a large number of degrees of freedom interacting with each other. A central question is to

understand which conditions keep a complex system stable in one configuration, allowing

the coexistence of its different components. In order to address this question, among

others, an active area of study is modelling complex systems as networks of interacting

nodes [Dorogovtsev and Mendes, 2013; Easley and Kleinberg, 2010]. For example, in

theoretical ecology it is important, for the coexistence of species, to understand how

the architecture of a food web affects the dynamics of an ecosystem [Allesina et al.,

2015; Allesina and Pascual, 2008; Coyte et al., 2015; Dunne et al., 2002b; Haas et al.,

2020]. In the context of neural networks, it is interesting to study how the network

of neural connections is related to the patterns of brain activity [Bimbard et al., 2016;

Brunel, 2000; Bullmore and Sporns, 2009; Kadmon and Sompolinsky, 2015; Sporns,

2010]. After the Global Financial Crisis of 2007-2008, a strong interest has been devoted

to understand what keep financial systems stable: for example, by modelling them in

terms of networks and studying the systemic risk [Bardoscia et al., 2017; Battiston et al.,

2016, 2012; Caccioli et al., 2018; Haldane and May, 2011; Mambuca et al., 2018; May,

2013; Sandhu et al., 2016].

This thesis studies how network topology affects the stability of complex systems,

exploring the interplay between the network structure and the kinds of interactions.

In this chapter we motivate and introduce the scientific paradigm on which this thesis

builds upon. Section 1.1 presents the mathematical approach that we adopted to address

these question, which is to consider the linearisation of the dynamics of complex systems

around fixed points. This linearisation allows to establish stability criteria that open

up to the mathematical paradigm of random matrix theory (see Sec. 1.2). Section 1.3

summarises briefly the main results of random matrix theory related to the area of

research of this thesis, i.e., to the spectral distribution, in terms of universal laws. In

Sec. 1.4 we present the main concepts of complex networks, that take into account the

network structure which we consider in this thesis. Section 1.5 introduces and discusses

sparse random matrices, which are useful to connect complex networks and random
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matrices, and which are the class of random matrices we consider for the model of

this thesis. In Sec. 1.6 we review some models from the literature on random matrices

with pairwise correlated interactions, and discuss them in light of the universal laws of

previous sections. Finally, Sec. 1.7 discusses the ideas, developed along this chapter, that

highlight the interest in studying the models of this thesis, that will be defined in detail

in Ch. 2.

1.1 Linearised dynamics and stability criteria of complex systems

We start with the general mathematical model that describes the dynamics of com-

plex systems of N degrees of freedom. We consider a set of first-order and non-linear

autonomous differential equations, i.e.,

∂t~x = ~f(~x), (1.1)

where ~x = ~x(t) := (x1(t), . . . , xN(t))T ∈ RN is a column vector that represents the

state of the system at a time t, and where the vector field ~f : RN → RN maps the

state of the system ~x into a column vector ~f(~x) := (f1(~x), . . . , fN(~x))T that couples the

degrees of freedom {xi} in a non-linear way. One example is a generalised Lotka-Volterra

model within theoretical ecology (see for example Ref. [Hofbauer and Sigmund, 1998;

May, 1973]), which describes the dynamics of N biological species, represented by their

numbers xi ≥ 0, where the components of dynamical vector field ~f are given by

fi({xi}) = xi(Jii +
N∑

j=1,j 6=i

Jijxj). (1.2)

Here the diagonal parameters {Jii} < 0 account for self-regulation mechanisms in the ab-

sence of interactions. In the general Lotka-Volterra model the diagonal contributions can

be non linear in xi: for example the logistic growth model includes a negative quadratic

term to account for a limited carrying capacity (see for example [Galla, 2018]). The cou-

plings {Jij} assemble into a N ×N matrix, named in this context as the community ma-

trix in the generalised Lotka-Volterra model, where Ji 6=j model the effect of species j on

the growth in size of species i. In a general ecosystem, Ji 6=j can be of any sign: a compet-

itive (cooperative) dynamics between species i 6= j would have Jij, Jji < 0 (Jij, Jji > 0),

where species i is disadvantaged (favoured) to grow in the presence of species j; the

predator-prey interaction between species i 6= j would have instead JijJji < 0, modelling

the fact that if one species is favoured by the presence of another one, then the other

is disadvantaged. In this example it is important to observe that the effect of species i

on j may be dependent on the effect of species j on i; for example, in the predator-prey

dynamics, opposite entries are constrained to have opposite signs.

In general complex systems with non-linear dynamics are not analytically solvable.



1.1. Linearised dynamics and stability criteria of complex systems 14

Then one typically considers a linear stability analysis. This consists first in determining

the fixed (stationary) points of the (global) dynamics, i.e., all the zeroes ~x∗ of ~f(~x), as

follows
~f(~x∗) = ~0. (1.3)

Second, in evaluating the Taylor expansion of each component fk(~x) in the neighbour-

hood of each of the fixed points, i.e.,

∀k = 1, . . . , N fk(~x) = fk(~x
∗) +

N∑
j=1

∂fk(~x
∗)

∂xj
(xj − x∗j) +O((xj − x∗j)2). (1.4)

Third, in replacing the non-linear dynamical function close to the stationary points

with their first order, i.e., linear, approximations. At this point the Hartman-Grobman

theorem guarantees that the local stability of a fixed point is governed by the linear

approximation of the dynamics in the proximity of the fixed point itself [Grobman,

1959; Hartman, 1960; Place and Arrowsmit, 1992]. Accordingly, we first conveniently

express the elements of Jacobian matrix of ~f at the fixed point as the sum of a diagonal

matrix d, with diagonal elements dj, and an interaction matrix A with elements Akj, so

that Ajj = 0 for all j, i.e.,

− dj δj,k + Akj :=
∂fk(~x

∗)

∂xj
, (1.5)

where we have used δj,k for the Kronecker delta function and the parameters dj are

positive. The magnitude of dj sets the time-scale for the exponential relaxation to the

stable fixed point: given an initial fluctuation from ~x∗, the species described by xj returns

back in a typical relaxation time given by d−1
j in the absence of interactions. We note

that in Eq. (1.5) there is an implicit dependence on the fixed point ~x∗.

The linearised dynamics of Eq. (1.1) from Eq. (1.5) reads

∂t~y = −d ~y + A~y, (1.6)

where the column vector in RN

~y = ~y(t) := ~x− ~x∗ (1.7)

denotes the deviation from the fixed point ~x∗ at time t, which, for example in the

ecological context, measures the variations in the population density of species i at time t.

Equations of the form (1.6) are used to model, for example, the dynamics of ecosystems

[Allesina and Tang, 2012; Gibbs et al., 2018; Grilli et al., 2016] and neural networks

[Ahmadian et al., 2015; Amir et al., 2016; Kadmon and Sompolinsky, 2015; Sompolinsky

et al., 1988] in the vicinity of some fixed point ~x∗. In the case of ecosystems A is the
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community1 matrix, for the linearised dynamics, that measure the per capita effect of

species j on species k at ~x∗, equivalently to the interaction matrix J of the generalised

Lotka-Volterra model in Eq. (1.2). In the context of neural networks the entries Akj

denote the strength of the synaptic connections between neurons represented by j, k.

As a first qualitative argument, one has that if the interactions Akj are small enough,

then the fixed point ~x∗ is stable since

lim
t→∞
|~y(t)| = 0, (1.8)

for all initial states ~y(0), where | · | is the norm of a vector. On the other hand, large

interactions Akj can destabilise the fixed point giving

lim
t→∞
|~y(t)| =∞, (1.9)

for all initial states ~y(0).

For general interactions Akj, given an initial fluctuation ~y(0), the time dependence

of the solution of Eq. (1.6) can be written as

~y(t) = e(−d+A)t~y(0), (1.10)

the stability of which is governed by the spectrum of the matrix A, which is defined as

the set of its eigenvalues

σ(A) := {λ ∈ C : det(A− λ1N) = 0}, (1.11)

where 1N is an identity matrix of rank N . Specifically, as shown in Appendix A.1, the

long time dynamics2 of Eq. (1.10) is governed by the leading eigenvalue λ1(A) of the

matrix A, defined as the eigenvalue that has the largest real part, i.e.,

<(λ1(A)) ≥ <(λ2(A)) ≥ . . . ≥ <(λN(A)), (1.12)

where if there exists more than one eigenvalue with the same real part, for example

because λ1(A) has a non-zero imaginary part, then we choose λ1(A) to be the eigenvalue

with the largest imaginary part. The Hartman-Grobman theorem mentioned above

assures that the local stability of the fixed point ~x∗, associated to a zero fluctuation

~y = ~0, can be expressed in terms of simple stability criteria on λ1(A). Under the

assumption that dj = d for all j, if the real part <(λ1(A)) of the leading eigenvalue

1according to the context of study, the community matrix in ecology can refer to the interaction
matrix of the non-linearised dynamics or to the interaction matrix within the linearised approach

2in non-symmetric community matrices, the fluctuation around a stable fixed point within linear
dynamics as in Eq. (1.6), may experience a transient dynamical behaviour characterised by a growth of
the initial fluctuation[Grela, 2017]
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satisfies

<(λ1(A)) < d, (1.13)

then the fixed point ~y = 0 is stable, while if

<(λ1(A)) > d, (1.14)

then the fixed point is unstable, as we discuss in Appendix A.1.

In order to infer the stability properties of fixed points in the limit of infinitely large

systems, it is important to know the dependence of the leading eigenvalue λ1(A) on N .

In particular, what matters is whether λ1(A) diverges or stays finite when N → ∞.

For example, only a finite leading eigenvalue guarantees that the fixed point ~x∗ remains

stable, for a fixed and finite value of d. On the other side, if λ1(A) diverges with N ,

there not exists a fixed and finite value of d that would keep the system stable.

Besides the stability criteria, the leading eigenvalue is central also in establishing

how large dynamical systems respond to external perturbations. As we discuss in Ap-

pendix A.1, if

=(λ1(A)) = 0, (1.15)

then the response of ~y is nonoscillatory, while if

=(λ1(A)) > 0, (1.16)

then the response is oscillatory. In particular, the imaginary part of λ1 determines the

frequency of oscillations of the slowest mode when the system is stable, and of the fastest

destabilising mode when the system is unstable.

1.2 Random matrix approach to the linearised dynamics

We discuss now a remarkable classical result on the stability of complex systems within

the linearised dynamics approach of Sec. 1.1, first shown in Refs. [Gardner and Ashby,

1970; May, 1972]. They considered a simple model of complex systems, based on the

assumption that all the entries Aij can be approximated by independent and identi-

cally distributed (i.i.d.) random variables drawn from a distribution with zero mean and

variance σ2. Accordingly, almost surely (with probability one3) if [May, 1972]

σ
√
N < 1, (1.17)

then the fixed point ~y = 0 is stable (for example, if σ = N−1/2−α, with α > 0), while if

σ
√
N > 1, (1.18)

3i.e., the probability P (σ,N)→ 1 for N →∞, where σ = σ(N)
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it is unstable. These stability criteria are examples of Eqs. (1.13)-(1.14) with d = 1, based

on the fact the leading eigenvalue for the random matrix considered above is typically

equal to σ
√
N [Ginibre, 1965]. The key point of these stability criteria is that the system

described in Eq. (1.6) almost surely becomes unstable for N large enough, for a fixed

value of σ, given that <(λ1) diverges in the limit N →∞. In the context of ecology, this

result was in contrast with the diffused idea that more diversity in ecosystems helps to re-

absorb the fluctuations around equilibrium, increasing the stability [Fortuna et al., 2010;

Haydon, 2000; Hooper et al., 2005; Kirk et al., 2015; Roberts, 1974]) Accordingly, and

in light of more ecological aspects, the instability criteria in Eqs. (1.17)-(1.18) became

part of the diversity-stability debate that has been investigated in the following decades,

questioning on how natural systems might violate the assumptions of complexity leading

to stabilising or destabilising features (see for example Refs. [Kondoh, 2003; Mccann,

2000; Moore and Hunt, 1988; Pimm, 1984]).

The classical result above is based on the idea of replacing the complex structure

of the Jacobian at the fixed point with a random matrix of i.i.d. entries. Indeed, the

true dynamics of large systems with high complexity is generally inaccessible, i.e., the

analytical expression of the components fk(~x) in Eq. (1.1) — from which one should

evaluate the Jacobian matrix in Eq. (1.5) at one fixed point ~x∗ to solve the linearised

dynamics in Eq. (1.6) — is typically unknown. On the other side, often in statistical

physics in the limit of large systems some observables may become universal, despite

being characterised by different microscopic details. In this case, a few shared structural

properties of the dynamical functions fk(~x) define universality classes of systems. One

successful and very fascinating example of this methodological approach is Random

Matrix Theory (which we name RMT from now on): it manages to describe in a single

conceptual framework many properties of systems of very different nature [Akemann

et al., 2011]. The simple idea of RMT is to infer properties of large matrices with

entries drawn from specific random distributions: since the first work in the field by

Wigner [Wigner, 1958] to study the energy levels of heavy nuclei, RMT has become

one of the fastest growing area of mathematics [Bai and Silverstein, 2010]. This fact

offers a great interest for many real systems, spanning from biology, neuroscience to

finance, where the complexity is present with large size systems and inherently random

features. In the ecological context, the diversity-stability debate has been considered in

the light of RMT (see Ref. [Allesina and Tang, 2015] and references therein); recently, in

establishing stability criteria for complex ecosystems [Allesina and Tang, 2012], a non-

linear generalisation of the classical linearised approach [Fyodorov and Khoruzhenko,

2016], and in studying destabilising effects due to dispersal in space [Baron and Galla,

2020]. Finally, the RMT approach on the stability of fixed points of complex systems

has become a paradigm in complex systems science: for example, it has been used to

understand the behaviour of financial ecosystems [Farmer and Skouras, 2013; Haldane

and May, 2011], and recently the resilience of large economies to perturbations [Moran
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and Bouchaud, 2019], as well as in the study of randomly assembled communities of

highly diverse species, which is an active field of research [Fried et al., 2016].

In the next section we briefly present the main results in RMT, namely the universal

laws for the spectral distribution, that allow ultimately to establish stability criteria as

in Eqs. (1.17)-(1.18).

1.3 Universal laws in RMT: dense and dilute random matrices

We summarise here the main results of RMT (see Appendix A.2 for more details), on

which this thesis builds upon and further extends. We focus first on the cases of dense

random matrices. We focus first on dense matrices as those random matrices A where

all the entries are non-zero with probability one, in contraposition with sparse matrices

presented in Sec. 1.5. The ensemble considered in the model by [May, 1972], discussed

in the previous section, is an example of a dense matrix. The RMT result on which the

result above is based is an example of universal law in RMT.

The spectrum (defined in Eq. (1.11)) of a random matrix A can be conveniently

encoded in the empirical spectral density that is defined as a sum of δ-distributions in

C, i.e.,

ρA(z) :=
1

N

N∑
j=1

δ(z − λj(A)), with z ∈ C, (1.19)

where the delta distribution in Eq. (1.19) is the bi-dimensional distribution that some-

times is denoted with δ(2): for z ∈ C, δ(2)(z) = δ(x)δ(y), with x := <(z) and y := =(z),

that we will simply denote as δ(z).

The fundamental object in RMT is, if it exists, the limiting spectral distribution ρ

of the empirical spectral density in Eq. (1.19), for N → ∞. In this case ρA(z) is self-

averaging. Self-averaging quantities in disordered systems are those for which the limit

N → ∞ exists and it is deterministic. In general, it is not easy to show whether ρA(z)

is self-averaging. However, there are important theorems in RMT (see Appendix A.2)

that establish the convergence of the empirical spectral measure associated to ρA(z)

for dense matrices, and hence establish that ρA(z) is self-averaging. Moreover, these

theorems for dense matrices express the limiting distribution ρ as universal laws: the

universality principle [Tao and Vu, 2010; Wood, 2012] for dense matrices in RMT predicts

that the limiting distribution ρ should not depend on the specific distribution of the

entries. In the following we summarise the universal laws for three classes of random

matrices: Hermitian, the non-Hermitian with i.i.d. entries and the non-Hermitian with

i.i.d. pairs of entries random matrices, and the associated universal laws laws known

as semi-circular law (also Wigner’s law), circular law (also Girko’s law) and the elliptic

law (also generalised Girko’s law), respectively (see Appendix A.2 for the corresponding

theorems).

First, we consider non-Hermitian random matrices A with i.i.d. entries on and above
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the diagonal, with mean zero and variance one. As first shown by Wigner [Wigner, 1958]

the limiting distribution of the empirical spectral density on the real axis of A/
√
N is

given by

ρ = ρ(sc)(x) =


1

2π

√
4− x2, if |x| ≤ 2;

0, otherwise,
(1.20)

with x ∈ R. The result in Eq. (1.20) is known in the literature as semi-circular law; the

corresponding Theorem 1 by [Bai, 1999] is stated in Appendix A.2.

Let us now consider non-Hermitian matrices A with independent and identical dis-

tributed (i.i.d.) entries Aij. As originally shown by [Mehta, 1967], by using the joint

probability density of the eigenvalues of A/
√
N in the Gaussian ensemble, derived by

[Ginibre, 1965], the density of the empirical spectral measure converges to

ρ = ρ(c)(z) =


1

π
, if |z| ≤ 1;

0, otherwise,
(1.21)

with z ∈ C.

In the 1980s, Girko originally started to study (and continued for thirty years) more

general matrices which combine Hermitian and non-Hermitian models (see for exam-

ple [Girko, 2006] and references therein), where mainly the hypothesis of i.i.d. in non-

Hermitian has been relaxed to include correlations between the off-diagonal elements

of {(AijAji)}, with arrange in i.i.d. pairs. Also in this case there exist an universal

law. Namely, under the assumptions (see for more detailed hypotheses the condition

in Def. A.2.1) that all the entries Aij have mean zero and variance one, and that

〈AijAji〉 = τ , where 〈〉 denotes the expectation value with the given probability dis-

tribution, the limiting spectral distribution of A/
√
N satisfies the elliptic law

ρ = ρ(e)(z) =


1

π(1− τ 2)
, if z ∈ Eτ ;

0, otherwise,
(1.22)

where the elliptic support is defined through

Eτ :=

{
z ∈ C :

(
<(z)

1 + τ

)2

+

(
=(z)

1− τ

)2

≤ 1

}
, (1.23)

which is an ellipse of horizontal semiaxis 1 + τ and vertical semiaxis 1− τ . In the case

of τ = 0, the elliptic law correctly recovers the circular law.

An important observation about the elliptic Theorem 3 (and similarly for the semi-

circular and circular Theorems) is that it rules the convergence for N →∞. However, in

some contexts, by neglecting the convergence problem to a compact support for N →∞,

where N is large but finite, an elliptic law in Eq. (1.22) and Eq. (1.23) (and similarly for
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the semicircular and circular laws) can be considered without rescaling the matrix A by

1/
√
N , for which one simply finds the rescaled semiaxes

√
N(1 ± τ), while the density

remains uniform but rescaled to be normalised. This scenario is the one in the model

by [May, 1972] in Sec. 1.2, where the matrix entries Aij are assumed to be independent

of N , hence the mean and the variance as well. Accordingly, in all the dense ensembles

of this section the leading eigenvalue diverges in the limit N → ∞, a fact that in these

cases is guaranteed by the universal laws. This translates into the fact that for N large

enough the fixed points of the systems represented by these ensembles, within the lin-

earised dynamics approach, are almost surely unstable. Moreover, we note that while in

the hypotheses of the theorems for the universal laws the variance of the entries Aij is

assumed to be unitary, one can have a finite variance σ2 for and the supports rescaled

by
√
σ; for example, the elliptic support have rescaled semiaxes σ(1± τ/σ2).

An important extension of the three universal laws presented here for dense matrices

can be obtained when the entries of the corresponding matrices A are non-zero with

a probability that depends on the matrix size N . Indeed, when Aij is non-zero with

probability of order O(Nα−1), with 0 < α ≤ 1, then the empirical spectral density of the

matrix A/
√
Nα converges to the Eqs. (1.20)-(1.22) [Basak and Rudelson, 2017; Dumitriu

and Pal, 2012; Mirlin and Fyodorov, 1991; Tran et al., 2010; Wood, 2012] (see Theorem

4 for the non-Hermitian case with i.i.d. entries). A remarkable exception that does not

satisfy the universal laws is when α = 0: we discuss more in detail this case in Sec. 1.5.

The random matrix ensembles discussed above can be described, from a network

perspective, in terms of dense or dilute graphs. However, the constituents of real-world

systems interact through specific preferential interaction whose structure is better de-

scribed by large, complex networks where nodes are not all linked with all the others.

It is therefore interesting to understand the stability of dynamical systems defined on

infinitely large, sparse, random graphs with edges that are characterised by random

weights with zero mean and finite second moment. Under these assumptions, interac-

tions can still be approximated by random variables, within RMT approach, but it can

be studied how the non trivial graph structure may affect system stability.

In the next section, we introduce complex networks, and the main concepts of net-

works that are used in this thesis.

1.4 Complex networks

Here we first introduce the notion of a graph, second we develop the concept of ran-

dom graphs [Albert and Barabási, 2002; Bollobás, 2001; Dorogovtsev and Mendes, 2013;

Newman, 2010].

Some authors use the word “networks” to denote the physical objects in the real

world, and “graphs” for their mathematical description. In this thesis we will not make

this distinction.
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1.4.1 Graph theory elements

A graph G is defined as a pair of a set of nodes (or vertices) V = 1, . . . , N and a set of

edges (or links) E ⊂ V × V which connect the nodes. A subgraph G ′ of G is a graph

with nodes V ′ and links E ′ such that V ′ ⊆ V and E ′ ⊆ E.

A first useful distinction is between undirected and directed graphs. The first are

those in which ∀(i, j) ∈ E : (j, i) ∈ E; the second are those where this last condition

is not met, i.e., ∃(i, j) ∈ E : (j, i) /∈ E. This symmetry in undirected graph allows to

disregard the order in the pairs (i, j) if dealing with only undirected graphs, so that in

undirected graphs E can be considered as a set of unordered pairs of vertices which are

connected by a (bidirectional or undirected) link. Simple graphs are those graphs where

self loops (or self links) are excluded, i.e., ∀i ∈ V (i, i) /∈ E.

The possible number of links in a given graph of N nodes is a combinatorial problem:

it is straightforward to see that for undirected simple graphs there are
(
N
2

)
possible edges,

which are the possible unordered pairs of N vertices. Similarly, for directed simple graphs

there are a double number of possible (directed) links, i.e., 2
(
N
2

)
. A very useful object

that bijectively determines a generic graph is its adjacency matrix. Given a graph G of

N vertices, its adjacency matrix C of size N has entries Cij defined as

Cij =

1 if (i, j) ∈ E;

0, otherwise,
(1.24)

i.e., Cij is a binary logical variable which is non-zero when there is a link between nodes

j and i, where i, j = 1, . . . , N . A property of undirected graphs is that their adjacency

matrices are symmetric. From now on we leave understood that the number of vertices

of a graph and the size of its adjacency matrix is denoted by N .

The adjacency matrix allows to define many graph properties in a simple way. We

mention now the ones that will be used in this thesis. Given a node j, the neighbourhood

∂j is the defined as the set of neighbours of node j, i.e.,

∂j = {i : i 6= j, Cij = 1}. (1.25)

A path of length k is an ordered sequence of k nodes {i`} such that the nodes i` and

i`+1 are connected, i.e., in terms of the adjacency matrix

k−1∏
`=1

Ci`i`+1
= 1 if the graph contains the path ik → ik−1 → · · · → i1. (1.26)

From the definition of paths one can introduce cycles, which we refer many times, which

are defined as paths of length larger than two where the only repeated indices are the

first and the last, i.e., ik = i1
4.

4This definition of cycles excludes the paths made by moving along an existing path and returning
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Other important objects in a graph G that can be defined in terms of path are the

connected components, which are the largest subgraphs of G such that for each subgraph

there exists a path between all vertices within the subgraphs. In a connected graph there

is only one connected component that coincides with the graph.

Now we can define one kind of graph, the tree graph or simply tree, that is very

important for this thesis (see Ch. 3). Trees are connected graphs without any cycles.

Trees can be either directed or undirected, although we will consider undirected ones.

The adjacency matrix can be used to define other graph properties, such as the degree

of a node i — for simplicity we consider undirected graphs —: it is the number of nodes

connected to the vertex i, or and is given simply by

ki(C) :=
N∑
j=1

Cij, (1.27)

while ordering all the node degrees one has the degree sequence

k(C) := (k1(C), . . . , kN(C)), (1.28)

From the node degrees (and hence from the original adjacency matrix itself) one can

also evaluate useful scalars, such as the average degree of the graph

k̄(C) :=
1

N

N∑
i=1

ki(C) =
1

N

N∑
i,j=1

Cij, (1.29)

and the degree distribution

pdeg(k|C) :=
1

N

N∑
i=1

δki(C),k, ∀k ∈ N. (1.30)

1.4.2 Random graphs

A random graph is a graph where the edges occur at random, according to an assigned

rule which defines the random graph ensemble. A first example of random graph is given

by Erdös and Rényi, who introduced the random graph model ΓM,N [Erdös and Rényi,

1959] characterised by a number M of edges and N nodes: the
((N2 )
M

)
graphs in this

ensemble have the same fixed number of edges and these graphs are all equally likely.

The prototypical random graph G(N, p) introduced by Gilbert [Gilbert, 1959] 5 assigns

to each possible edge in E the same probability p to exist. This specific ensemble is

characterised by its corresponding (random) adjacency matrix C which in this case can

to the first node through the inverse path, which is always possible in undirected graphs, as well as it
excludes self-loops

5same year but independently from Erdös and Rényi [Erdös and Rényi, 1959]
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be easily defined by the following joint factorising probability density

P (C) =
∏
i<j

[
pδCij ,1 + (1− p)δCij ,0

]
δCij ,Cji , (1.31)

where p ∈ [0, 1] denotes the probability of a single link to be present, independently from

any other edge, while the δCij ,Cji forces C to be a symmetric matrix (which corresponds

to an undirected simple graph). While in the model introduced originally by Erdös and

Rényi [Erdös and Rényi, 1959] the number M of edges is fixed among the realisations

of the random graph, in the Gilbert model the number M of edges fluctuates, while the

probability p of a single edge independently from the other edges is fixed. One year

later Erdös and Rényi studied further the model G(N, p) and explored the behaviour

for N → ∞ limit [Erdös and Rényi, 1960]; their results became a reference point for

random graphs studies and the G(N, p) is nowadays generally referred to as the Erdös-

Rényi model, also for its simplicity.

We would like now to explore briefly the large N limit in the random graphs, mainly

for two reasons: first, real world networks are usually very large and, second, mathe-

matical results in terms of universal laws can be obtained in this limit, similarly to the

dense case in Sec. 1.3. For simplicity, we consider now the G(N, p) random graph model,

with joint probability density of its adjacency matrix as in Eq. (1.31), but the following

reason is valid in general. The expected mean degree in Eq. (1.29) with respect to the

joint probability density in Eq. (1.31) can be easily evaluated and it reads

〈k̄(C)〉P = p× (N − 1). (1.32)

The dependence of p in Eq. (1.31) on N is relevant in the N → ∞ limit, as it can be

seen already at the level of the mean degree in Eq. (1.32). With this respect, we make

explicit its dependence on N by defining

p :=
c

(N − 1)1−α , (1.33)

where c is independent of N and finite, while 0 ≤ α ≤ 1. Accordingly, the expected

average degree in Eq. (1.32) reads

〈k̄(C)〉P = c× (N − 1)α. (1.34)

While for 0 < α ≤ 1 the expected average degree in Eq. (1.34) diverges in the N → ∞
limit, it stays finite (and equal to c independently of N) when α = 0. This last case

is special for the random graphs point of view, because it allows to model very large

complex networks with a finite number of connections per single node, hence α = 0 is

called the finite connectivity regime in the Erdös-Rényi model. Graphs with 0 < α ≤ 1

are considered as dilute graphs. Also at the level of the expected degree distribution —
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which is the ensemble average of Eq. (1.30) such as Eq. (1.32) is the ensemble average of

Eq. (1.29) — one can show that α = 0 is peculiar. Indeed, in the Erdös-Rényi model with

p as in Eq. (1.33) one can evaluate the degree probability distribution by the expected

degree sequence

pdeg(k|N) := 〈pdeg(k|C)〉P =

(
N − 1

k

)(
1− c

(N − 1)1−α

)N−1−k

(
c

(N − 1)1−α )k, (1.35)

i.e., it is a binomial distribution with N−1 independent Bernoulli trials with probability

of success p = c/(N − 1)1−α. Eq. (1.35) admits the following limit for N →∞ if α = 0:

pdeg(k) := lim
N→∞

〈pdeg(k|C)〉(α=0)
P = e−c

ck

k!
, (1.36)

i.e., it is a poissonian degree distribution with mean degree c.

Finally, an important question for random graphs is to determine the criteria for

the existence of a largest connected (or giant) component. Indeed, a graph from a

general random graph ensemble typically decomposes into a giant component and a

large number of small clusters. For example, a remarkable first result on the G(N, p) in

the finite connectivity regime is that a giant component exists for c > 1, and c = 1 is

the percolation transition [Erdös and Rényi, 1960]. We revise briefly percolation theory

in Appendix A.8, where we also apply it to determine the criteria for the existence of a

largest connected component for the random graphs models considered in this thesis.

1.4.2.1 Random graphs with prescribed degree distribution

For general degree distributions, for example the ones built from the graph as in the

degree distribution in Eq. (1.30) it is necessary to take the ensemble average to evaluate

the expected degree distributions, as in the left hand side of Eq. (1.35). Another approach

is to assign a prescribed degree distribution a priori, as an input and independently from

a single realisation of a random graph, and then the random graph is determined as a

consequence. We define here the random graph ensemble in terms of prescribed degree

distributions pdeg(k|N) (we do not change notation from above, i.e., we denote prescribed

degree distributions with the notation pdeg), which is the approach that we use in this

thesis. Fixed a prescribed degree distributions pdeg(k|N),

1. generate a degree sequence with the degrees i.i.d. random variables drawn from

k := (k1, . . . , kN), with ki ∼ pdeg(k|N); (1.37)

2. given this degree sequence in 1) vertices are uniformly and randomly connected,

as in the configurational model [Bollobás, 2001; Dorogovtsev and Mendes, 2013;

Newman, 2018].
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For example, in the Erdős-Rényi graph above, within the prescribed degree distri-

bution approach, one would assign a priori the binomial distribution in the right hand

side of Eq. (1.35) to pdeg(k|C) = pdeg(k|N). In the limit N →∞, the prescribed degree

distribution may converge to a distribution that is independent of N , i.e.,

lim
N→∞

pdeg(k|N) = pdeg(k), (1.38)

which is an example of a self-averaging object in disordered systems. For example, in

the Erdős-Rényi graph above, the limit N →∞ gives the poissonian degree distribution

when α = 0. Other examples of finite-connectivity ensembles with a prescribed degree

distribution are the regular ensemble, for which pdeg(k) = δk,c, and the exponential

random graph ensemble, for which pdeg(k) = [c/(c+ 1)]k (c+ 1)−1.

1.4.2.2 Locally treelike random graphs

Locally treelike graphs [Bordenave and Lelarge, 2010; Dembo et al., 2010; Metz et al.,

2019] are defined as a sequence of sparse random graph for which any finite neighbour-

hood of a randomly chosen vertex is connected like a tree graph almost surely (i.e., with

probability one when N → ∞). In other words, in locally treelike graphs cycles of a

given finite length (i.e., small cycles) are rare, although there exists still a finite number

of them in the N →∞ limit [Bollobás, 2001; Neri and Metz, 2020]. As shown in [Dembo

et al., 2010], random graphs with a prescribed degree distribution pdeg (see Sec. 1.4.2.1)

that converges for N →∞ as in Eq. (1.38) are an example of locally treelike graphs.

Note that the locally treelikeness is a local property, since it does not exclude the

presence of cycles of divergent length, which indeed are present typically in a divergent

number with the system size [Bianconi and Marsili, 2005]. We refer to these cycles as

long cycles, to distinguish them from the short ones discussed above. Note also that the

locally treelikeness is an asymptotic property, hence one typically considers the N →∞
limit in order to exploit this property.

1.5 Sparse random graphs and sparse random matrices

1.5.1 The leading eigenvalue of random graphs

From a random matrix perspective, it is very interesting to investigate on the spectral

properties of the adjacency matrix of a random graph. In particular, one important

spectral quantity is the leading eigenvalue λ1 since it governs the stability properties of

complex systems as discussed in Sec. 1.1. When we refer to the leading eigenvalue λ1

of a graph, we mean the leading eigenvalue λ1 of its associated adjacency matrix. the

From a graph perspective, we can significantly extend the classical results on the leading

eigenvalue of dense matrices, which are equivalent to dense graphs, to dilute graphs, for

example in the G(N, p) model above when 0 < α ≤ 1, and to sparse graphs characterised
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by a finite mean connectivity, for instance α = 0 in the G(N, p) model. In the following,

we consider the regimes above the percolation threshold, i.e., when a giant component

in the graph exists. In particular, in the G(N, p) model almost surely for N � 1 the

leading eigenvalue λ1 of the adjacency matrix in Eq. (1.31), with p in Eq. (1.33) is given

by [Krivelevich and Sudakov, 2003]

λ1 =


max{

√
kmax, cN

α}, if 0 < α ≤ 1;√
logN

log(logN)
, if α = 0;

(1.39)

where kmax is the maximal degree of the graph G(N, p). This exact result translates

into the fact that the leading eigenvalue λ1 diverges in the G(N, p) model, since kmax

diverges. In general, random undirected graph ensembles defined on prescribed degree

distribution pdeg the leading eigenvalue has a lower bound, i.e., λ1 ≥
√
kmax [Chung

et al., 2004]. More specifically, there are two regimes where almost surely for N � 1 the

leading eigenvalue is given by

λ1 =


Kpdeg , if Kpdeg >

√
kmax logN ;√

kmax, if Kpdeg <

√
kmax

log2N
;

where Kpdeg :=
〈k2〉pdeg
〈k〉pdeg

. (1.40)

Accordingly, for infinitely large and undirected random graphs defined with prescribed

degree distribution the leading eigenvalue diverges when the degree distribution has

unbounded support (hence kmax diverges). This fact has implications in the stability of

fixed points of complex systems modelled on such graphs with symmetric interactions (see

Sec. 1.5), since their leading eigenvalue behaves as in the underlying undirected graph,

hence in the limit N →∞ λ1 diverges. Recently, studies on random directed graphs [Neri

and Metz, 2016, 2020; Tarnowski et al., 2020] show significant distinctions with respect

to undirected graph. In particular, for adjacency matrices of directed random graphs on

prescribed joint degree distribution pd
deg(kin, kout) of indegrees kin and outdegrees kout,

the leading eigenvalue is given by

λ1 = c̃(ρ̃+ 1), with ρ̃ :=
〈kinkout〉pddeg − c̃

2

c̃2
, (1.41)

where c̃ := 〈kin〉pddeg = 〈kout〉pddeg is the mean outdegree. The quantity c̃(ρ̃ + 1), that we

name effective mean degree, characterises the effective number of degrees of freedom each

node in the network interacts with. Hence, in the limit N →∞, the leading eigenvalue

of random, directed graphs is finite as soon as the effective mean degree is finite. As

discussed above, this implies that complex systems defined on these graphs can be stable

in the limit N →∞.

The results discussed above gives a first example on how interactions between single

components play a major role on the stability property of the system granting the sta-
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bility of many directed graphs with same structure and statistical properties as unstable

undirected ones. Symmetric and unidirectional interactions are often not realistic types

of interactions for modelling real world systems, such as, ecosystems [Allesina and Tang,

2012; Barbier et al., 2018] and neural networks [Mart́ı et al., 2018]. In general, interac-

tions between the constituents of complex systems are bidirectional and non-symmetric,

and this fact motivates this thesis in studying complex systems on networks where the

interactions are bidirectional and non-symmetric. In the next section we discuss sparse

random matrices from a complex network perspective, where the universal laws in Sec. 1.3

stop to be valid.

1.5.2 Sparse random matrices from a network perspective

Sparse matrices can be defined as those random matrices that contain “many” zeros

such that the universal laws in Eqs. (1.20)-(1.22) (and the corresponding Theorems 1, 2

and 3) stop to be valid. The adjacency matrix in Eq. (1.31) is an example of a sparse

matrix, and the associated graph with α = 0 in Eq. (1.33), i.e., in the finite connectivity

regime, an example of sparse random graph. In this section, we summarise the results

in the study of the spectra of sparse matrices, to show how they distinguish from the

dense and dilute matrices at the level of the spectral distribution.

While the adjacency matrices entries are 0, 1 only, one typically consider sparse ran-

dom matrices which have non-zero entries distributed according to a given distribu-

tion. This can be reached with the following parametrisation of a sparse random matrix

A = {Aij} with entries

Aij = CijJij, i, j ∈ {1, . . . , N} , (1.42)

where C = {Cij} is an adjacency matrix of a given random graph ensemble which

takes into account the sparsity, while J = {Jij} is a random matrix with a given joint

distribution of its entries, that can be a Hermitian or non-Hermitian matrix, such as in

Sec. 1.3. Equivalently, one can see the random matrix A as a weighted random graph,

where the {Jij} are the weights of the links between nodes i, j when they are connected

with a link, i.e., when Cij = 1. We consider here the adjacency matrix of the Gilbert

model in Eq. (1.31), with p as in Eq. (1.33) with α = 0, i.e., random graphs in the

finite connectivity regime, when N →∞. The corresponding adjacency matrix displays

a finite number of non-zero elements per row and a non-zero probability of having all-

zeroes rows; the probability of a row to be filled by all zeroes converges to a constant for

N →∞, and thus with probability one a constant fraction of the rows contain all zeroes

for N →∞. In the following we explore the random matrix theory results for matrices

such as Eq. (1.42), for Hermitian and non-Hermitian matrices J = {Jij}. We note that

the symmetry properties of J are the same than A, whereas C encodes only the sparse

network structure.
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Let us now consider the case of symmetric sparse matrices. In the sparse regime,

the graph associated to the matrix typically decomposes into a giant component and a

large number of small clusters, mostly trees. The isolated finite clusters are typically

associated to localised eigenstates which contribute to the point spectrum. In particular,

the spectral distribution is typically characterised by spikes [Bauer and Golinelli, 2001a;

Duras et al., 1997; Kühn, 2008; Mirlin and Fyodorov, 1991; Nagao and Tanaka, 2007;

Rodgers and Bray, 1988; Rogers et al., 2008; Sato and Kobayashi, 1976; Semerjian and

Cugliandolo, 2002; Sodin, 2009], and extended tails on the real line, i.e., Lifshitz tails

[Bapst and Semerjian, 2011; Bauer and Golinelli, 2001b; Khorunzhiy et al., 2006; Kriv-

elevich and Sudakov, 2003; Slanina, 2011, 2012]. In particular, when entries Jij can be

±1 the tails are characterised by the scaling of the spectral distribution as

ρ(x) = O(x−2x2), for x2 →∞, (1.43)

and its support extends to the entire real line. Accordingly, the leading eigenvalue

diverges. The tails in the spectrum can be related to the fact that the leading eigenvalue

of the associated adjacency matrix diverges with the system size, as discussed in Sec. 1.4.

These facts confirm that the case α = 0 is excluded from the universal law in Eq. (1.20)

and the hypotheses of Theorem 1.

The spectral distribution on non-Hemitian and sparse random matrices has been

much less studied in the mathematical literature than its symmetric counterpart. For

example, it has been investigated with the cavity method for non-Hermitian random

matrices [Neri and Metz, 2012; Rogers and Pérez Castillo, 2009], which will be presented

in Ch. 3. A numerical investigation for sparse non-Hermitian matrices has been made

when violating the Hypothesis (ii) in the condition in Def. A.2.1, where the pairs of

opposite matrix entries are independent but not-identically distributed; accordingly, the

support of the empirical spectral density deviates from the ellipse in the complex plane

[Cicuta and Molinari, 2016] (see the next Sec. 1.6 for more details). In the case of directed

random graphs on prescribed joint degree distribution pd
deg and with i.i.d. Jij ∼ p(J),

[Neri and Metz, 2020] provided an exact formula for the typical value of the leading

eigenvalue, i.e.,

λ∗1 =


c̃(ρ̃+ 1) 〈J〉p , if 〈J〉p >

√
〈J2〉p
c̃(ρ̃+ 1)

;

√
c̃(ρ̃+ 1) 〈J2〉p, if 〈J〉p ≤

√
〈J2〉p
c̃(ρ̃+ 1)

;

(1.44)

where c̃ and ρ̃ are as in Eq. (1.41). Similarly to the leading eigenvalue in Eq. (1.41),

the leading eigenvalue is finite as the effective mean degree c̃(ρ̃ + 1) is finite, and this

property guarantees the stability of the fixed point in the limit N →∞.
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Finally, we show in Table 1.1 a schematic summary of the results for the spectra of dense,

dilute and sparse matrices presented in this chapter to collocate them in light of the universal

laws in RMT.

Table 1.1: Picture of the most recent and relevant results known in the literature of RMT
in the infinite size limit.

SPARSITY
↓ HERMITIAN

NON-HERMITIAN

i.i.d. Aij i.i.d. (Aij , Aji)i 6=j

DENSE
Theorem 1:

[Bai, 1999]

Theorem 2:

[Tao and Vu, 2010];

May model:

[May, 1972]

Theorem 3:

[Nguyen and O’Rourke, 2015],

[Götze et al., 2015]

DILUTE

0 < α ≤ 1
[Mirlin and Fyodorov, 1991]

Theorem 4:

[Wood, 2012];

May model (α = 1):

[May, 1972]

[Allesina and Tang, 2012],

[Tang et al., 2014],

(both α = 1)

SPARSE

α = 0

[Rodgers and Bray, 1988]

(replica),

[Mirlin and Fyodorov, 1991]

(susy),

[Semerjian and Cugliandolo, 2002],

[Kühn, 2008]

(replica),

[Rogers et al., 2008]

(cavity),

and main text

[Rogers and Pérez Castillo, 2009]

(cavity),

[Metz et al., 2019]

(cavity)

[Rogers and Pérez Castillo, 2009]

(cavity),

[Neri and Metz, 2012]

(cavity);

Directed graphs:

[Neri and Metz, 2016],

[Tarnowski et al., 2020],

[Neri and Metz, 2020]

Legend. Different colours refer to the following universal laws in RMT: (i) Semi-circular
law in Eq. (1.20), (light-blue); (ii) Circular law in Eq. (1.21), (amber); (iii) Elliptic law in
Eq. (1.22), (green). The columns refer to Hermitian and non-Hermitian complex matrices
A (the real matrices are included); as for the non-Hermitian, both cases of i.i.d. entries
and i.i.d. pairs of opposite entries are listed. The rows refer to sparsity in A, ranging from
non-sparse (dense) to the sparse ensembles as defined in Eq. (1.42) with the matrix C as in
Eq. (1.31) with p depending on α as in Eq. (1.33), with the special case of sparse (α = 0),
for which the universal laws (i-iii) are violated.
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1.6 Antagonistic random matrices in previous works

Now we discuss briefly the models of complex systems in literature that can be classified

with the non-Hermitian random matrices with pairwise correlation between off-diagonal

elements, with a special focus on antagonistic matrices.

Recently, [Cicuta and Molinari, 2016] suggested to consider as a model for the ecolog-

ical community matrix in Eq.(1.6), within the linearised approach, a matrix belonging

to the random antagonistic ensemble A, as generalisation of anti-symmetric matrices.

Antagonistic matrices A in the work by Cicuta [Cicuta and Molinari, 2016] are defined

by having zero diagonal terms, while off-diagonal opposite terms (i 6= j) are either zero

Aij = Aji = 0 or with opposite signs AijAji < 0. These are sparse matrices, in a broad

sense, with some of the entries being equal to zero, modelling large ecosystems where

the different interacting species in the couples have a predator-prey interaction.

The idea of focusing on predator-prey interaction follows essentially from [Allesina

and Pascual, 2008; Allesina and Tang, 2012; Tang et al., 2014], which show that such sign

correlated interactions between different species have strong stabilising effects: among

the all kinds of community matrices A, i.e., cooperative, competitive, predator-prey,

mixture or random, the predator-prey matrices are the most likely to be stable at fixed

finite N , while the mixture matrices are the least likely to be stable. Another feature

highlighted in [Allesina and Tang, 2012] is that the probability of stability for predator-

prey systems decreases if there is a large preponderance of weak interaction [Emmerson

and Yearsley, 2004; Mccann et al., 1998]. The models considered by [Allesina and Tang,

2012] and [Tang et al., 2014] included the probability C — independent of N — for a

couple to be interacting, while with probability 1 − C a couple is not interacting. The

parameter C is known as the connectance in ecological context [Gardner and Ashby,

1970], and reflects the fact that each species do not interact with every other species, but

with only a fraction C of them. Although this inclusion is not introduced via modelling a

network structure, as for example it would be within Eq. (1.42), Allesina’s antagonistic

matrices can be obtained via Eq. (1.42): one would have α = 1 in Eq. (1.33), i.e.,

p = c = C and the expected average degree in Eq. (1.34) is C × (N − 1). This approach

of reducing the fully connected structure via the connectance C, was also considered in

May’s model within symmetric matrices [May, 1972], where in that context it resulted to

a simple rescaling of the circular law, compatible with an all-to-all model of interactions.

Some of the definitions of antagonistic matrices in [Cicuta and Molinari, 2016] and

the models considered in [Allesina and Tang, 2012] are related to the mathematical

framework and hypotheses introduced for the elliptic Theorem 3 [Götze et al., 2015;

Nguyen and O’Rourke, 2015]; for example, the matrices introduced in [Allesina and

Tang, 2012] satisfy these hypotheses — in particular the condition (ii) in Def. A.2.1 —

and so the elliptic law is obtained. This turns out, for example, to establish the stability

criteria in [Allesina and Tang, 2012], where the leading eigenvalue λ1 — which governs

the stability — of the matrices considered is on real axis and is on the boundary of the
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rescaled ellipse. More specifically, in terms of the elliptic law in Eq. (1.22) and Eq. (1.23),

one has that stability is controlled by the value of the horizontal semiaxis of the elliptic

law, which in this case reads

λ1 = σ
√
NC(1 + τ/σ2), (1.45)

with variance σ and covariance τ . It is important to observe that in this elliptic regime

the leading eigenvalue diverges in the infinite size limit, independently of the kind of

interactions considered.

[Allesina and Tang, 2012] considered also the interplay between the kinds of inter-

actions (predator-prey or others) and their weakness, which give stabilising and de-

stabilising effects, in providing stability criteria for systems of large but finite sizes. It is

unknown, however, and this is the main question of this thesis, how including a sparse

network structure influences the stability.

We show now in Table 1.2 a scheme of the current study on sparse matrices with

pairwise correlated interactions (Jij, Jji)i 6=j, where we mention that the model for the

matrices will be presented in Ch. 2.

Table 1.2: Picture of the investigations known in the literature of RMT on random
antagonistic matrices with i.i.d. pairs of opposite entries.

SPARSITY
↓

SPARSE MATRICES with i.i.d. (Aij , Aji)i 6=j
AijAji ≤ 0, i 6= j

DENSE

Theorem 3:

[Nguyen and O’Rourke, 2015],

[Götze et al., 2015];

[Cicuta and Molinari, 2016].

DILUTE

0 < α ≤ 1

[Allesina and Tang, 2012],

[Tang et al., 2014],

(both α = 1)

SPARSE

α = 0
This thesis (see Ch. 2)

Legend. The rows refer to sparsity in A, ranging from non-sparse (dense) to the sparse
ensembles with the special case of α = 0, for which the elliptic law in Eq. (1.22) is
violated. In green the Elliptic law in Eq. (1.22) and the cases where it is valid. In this
table, we present also where our results would be collocated, i.e. the sparse regime where
the underlying graph is in the finite connectivity regime.

One example in the literature [Cicuta and Molinari, 2016] of antagonistic matrices

which violates the hypotheses of the elliptic Theorem 3 has been to consider pairs of

opposite entries (Ai 6=j, Aj 6=i) to be independent but not identically distributed — i.e.,

hypothesis (ii) in condition in Def. A.2.1 is relaxed —, where the pairs of opposite
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entries (Ai 6=j, Aj 6=i) are distributed as

pij(u, l) =


(2γij)

−1, if u ∈ (1, 1 + γi,j) and l ∈ (−1− γi,j,−1);

(2γij)
−1, if l ∈ (1, 1 + γi,j) and u ∈ (−1− γi,j,−1);

0, otherwise,

(1.46)

with

γi,j =
c

1 + (j − i)p
,

for different values of c, p. As the size N of the antagonistic matrix A increases, the pair

of entries far from the diagonal are increasingly similar to an antisymmetric matrix. All

the eigenvalues λi(A) are in a strip |<(λi(A))| < a where the width a of the strip does

not increase with N ; actually it slightly decreases, as one can see from Fig. 1.1.

Figure 1.1: [Cicuta and Molinari, 2016]: Eigenvalues of a random antagonistic matrix
with independent but not identically distributed pairs of opposite entries as in Eq. (1.46),
and parameters c = 50, p = 8, N = 400, 600, 800.

1.7 Sparse random matrices with antagonistic interactions

In this thesis we are interested in generalising the antagonistic matrices A of previous

works as in Sec. 1.6, which model the dynamics of species with predator-prey interactions,

by studying the effect of including a sparse network structure. As discussed in Sec. 1.5,

sparse networks have been considered with symmetric, i.i.d. non-symmetric, or directed

interactions; however, by definition, these models do not allow for sign constrained pair

interactions, like predator-prey ones. The sparse network structure reproduces the real-

istic feature that in a given ecosystem each species does not interact really with everyone,
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neither with a fraction of them C which is independent of the number of species N , but

only with a few of them. In this direction and in light of the summary on sparse random

graphs presented in Sec. 1.5, we consider in this thesis sparse matrices in the regime α = 0

(while the constant C is equivalent to α = 1, as discussed in Sec.. 1.6). The underlying

random network is in the finite connectivity regime, i.e., the expected average degree in

Eq. (1.34) is equal to c, which is finite, also known as the mean degree (or connectivity)

of the graph. This regime corresponds to real world systems where the degrees of free-

dom are interacting with a finite number of other degrees of freedom; in particular, when

some species are added to the ecosystem, the expected average degree in the ecosystem

remains roughly constant. This property does not hold only for ecosystems, but also for

general complex systems, for example social networks [Backstrom et al., 2011], and so it

is very interesting, under a general perspective, to study the properties of these sparse

interacting systems. As also pointed out by Allesina [Allesina et al., 2015], developing a

model for complex systems which includes this sparsity property, as well an interaction

structure (predator-prey), would make a big step forward in understanding realistic food

webs, as well as many real world systems.

The stability criteria based on the leading eigenvalue in Eqs. (1.13)-(1.14) highlight

also the importance to study the infinite size limit, to establish whether the associated

fixed point can be stable or not. As discussed in Sec. 1.5 the regime α = 0 is very

interesting also from the mathematical point of view, since it violates the hypotheses of

the theorems for the universal laws and, in particular for antagonistic matrices, of the

elliptic Theorem 3 in its weakest versions [Götze et al., 2015; Nguyen and O’Rourke,

2015]. Accordingly, studying these ensembles from a random matrix point of view is

a further extension of the current literature on sparse non-Hermitian random matrices

[Metz et al., 2019; Rogers and Pérez Castillo, 2009].

Finally, sparse antagonistic random matrices as in this thesis can be a good model —

i.e., with a realistic progress with respect to existing models — for the Jacobian matrix

A at a given fixed point ~x∗ in Eq. (1.6), which is the linearised (local) dynamics in the

vicinity of ~x∗ of the global global dynamics in Eq. (1.1) (which is generally unknown).

Accordingly, with the characterisation of sparse antagonistic random matrices we can

provide useful insights into the generic qualitative features of such systems. The inter-

est on potential applications goes far beyond the mathematical ecology context: e.g.,

games strategies [Galla and Farmer, 2013] or financial ecosystems [Farmer and Skouras,

2013; Haldane and May, 2011]. Moreover, the interplay between network structure and

interactions among the degrees of freedom of a system is of relevance as applications

of systems of many coupled nonlinear ODEs (e.g., complex gene regulatory networks

[de Jong, 2002], neural networks [Sompolinsky et al., 1988; Wainrib and Touboul, 2012]

and [Amir et al., 2016], or random catalytic reaction networks [Stadler et al., 1993]).
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1.8 Thesis outline

The rest of the thesis is organised as follows. In Ch. 2 we introduce the general model of

this thesis, i.e., sparse random matrices with pairwise correlated interactions, in particu-

lar the antagonistic and mixture ensembles that we study in detail in this thesis. Chapter

3 presents the cavity method for determining spectral properties of sparse non-Hermitian

random matrices. In Ch. 4 we extend the theory of Ch. 3 to study the general model

introduced in Ch. 2. Chapter 5 shows the numerical solutions of the theory developed

in Ch. 4 and compare them with the spectra of the models presented in Ch. 2. Chapter

6 presents a detailed study on the leading eigenvalue of the models presented in Ch. 2

which is central to determine stability properties of the fixed points of complex systems,

as discussed in this chapter. Finally, in Ch. 7 we discuss the conclusions of this thesis,

where we highlight the novel results and the extension in the current literature of sparse

random matrices, and further challenges that can build upon or results or generalise

them. We end this thesis with Appendices, where we present the main nontrivial math-

ematical methods that have been used to derive the results of this thesis discussed in

the main chapters.



Chapter 2

The model

In this chapter we define the models of complex systems that we consider in this thesis,

motivated from the discussion in Ch. 1, and for which we present results in Chs. 4-6.

This chapter is structured as follows. Section 2.1 defines the general random matrix

ensemble on sparse networks with pairwise correlated interactions. In Sec. 2.1.1 we

recover, from the general model, the symmetric, the i.i.d. non-symmetric and the oriented

sparse matrices. Then, Sec. 2.1.2 focuses on random matrix models that represent sparse

systems with predator-prey interactions only, and in Sec. 2.1.3 we consider a mixture of

predator-prey, mutualistic and competitive interactions. We refer to the former as the

antagonistic ensemble, following Refs. [Allesina and Tang, 2012; Cicuta and Molinari,

2016] (see Sec. 1.6), and to the latter as the mixture ensemble. In Fig. 2.1 we provide a

sketch of these two models.

Figure 2.1: Sketch of the interactions in the two main models, the antagonistic and
mixture model, that we study in this thesis, as well as in the oriented ensemble studied
before in Refs. [Metz and Neri, 2020; Metz et al., 2019; Neri and Metz, 2016].

2.1 The general model: sparse random matrices with pairwise

correlated interactions

We consider sparse random matrices A = {Aij}, which are defined as the following

element-wise product

Aij = CijJij, i, j ∈ (1, . . . , N), (2.1)
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where C = {Cij} is an adjacency matrix of a sparse, undirected, random graph (see

Sec. 1.5), i.e., Cij ∈ {0, 1}, characterised by a prescribed degree distribution (see Sec. 1.4.2.1)

pdeg(k) with mean degree

c =
∞∑
k=0

pdeg(k) k. (2.2)

Example of prescribed degree distributions are mentioned in Sec. 1.5, for example, we

remind here the binomial and poissonian degree distribution in Eq. (1.35) and Eq. (1.36).

The real variables Jij, forming the interaction matrix J = {Jij} within the linearised

dynamics approach (see Ch. 1), specify the effect that the degree of freedom j has on the

degree of freedom i. Our aim is to study interactions focusing only on the correlations

between the elements opposite to the diagonal, neglecting other residual correlations.

This translates in assuming the real pairs (Jij, Jji) to be independent and identically

distributed (i.i.d.), i.e., each pair (Jij, Jji) : 1 ≤ i < j ≤ N is distributed according to a

probability distribution p(u, l), independently from i, j. Since we focus on the role of the

interactions Jij, Jji, we also set the diagonal terms to be zeros, i.e., Jii = 0, corresponding

to simple graphs. We observe that the off-diagonal pairs (Jij, Jji) are as in the condition

in Def. A.2.1, used in the hypothesis of the dense elliptic Theorem 3.

We can define now the general model of this thesis, which is characterised by the

assumptions presented above. Sparse random matrices A as in Eq. (2.1), where the

underlying random graph is characterised by a prescribed degree distribution pdeg(k),

with the interaction matrix J formed by i.i.d. off-diagonal pairs (Jij, Jji) ∼ p(u, l), and

the diagonal terms are zero, define the general model of this thesis, which we refer to

as sparse random matrices with pairwise correlated interactions. Since such ensemble is

defined on random graphs with a prescribed degree distribution pdeg, then it is a locally

treelike model of graphs (see Sec. 1.4.2.2).

Before specifying the probability distributions implemented in this thesis, we discuss

how some ensembles already studied in the literature (see Sec. 1.5) can be obtained

within our formalism from Eq. (2.1).

2.1.1 Symmetric, i.i.d. non-Hermitian and oriented sparse matrices

Sparse and symmetric random matrices, where elements opposite to the diagonal are

the same [Abou-Chacra et al., 1973; Bordenave and Lelarge, 2010; Fyodorov and Mirlin,

1991; Kabashima et al., 2010; Kühn, 2008; Rogers et al., 2008; Semerjian and Cuglian-

dolo, 2002; Susca et al., 2019] are obtained by setting

p(u, l) = pS(u, l) = p̃(u)δ(u− l). (2.3)
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Sparse and non-Hermitian random matrices with i.i.d. interactions strength, i.e., without

any type of correlations [Metz et al., 2019; Rogers and Pérez Castillo, 2009], for which

p(u, l) = pN−H(u, l) = p̃(u)p̃(l), (2.4)

or for oriented random matrices [Metz et al., 2019; Neri and Metz, 2016, 2020; Rogers

and Pérez Castillo, 2009; Tarnowski et al., 2020], for which

p(u, l) = pO(u, l) =
1

2
p̃(u)δ(l) +

1

2
p̃(l)δ(u), (2.5)

where p̃ is a probability density generally supported on (−∞,∞). In the oriented case,

interactions are unidirectional, as illustrated in Fig. 2.1, corresponding to random fully

directed graph.

In the next subsection, we present two ensembles in a form that has not discussed

before in the literature (antagonistic matrices in the literature are discussed in Sec. 1.6),

namely, antagonistic random matrices in Sec. 2.1.2, for which p(u, l) represents predator-

prey interactions, and mixture matrices in Sec. 2.1.3, for which p(u, l) represents a mix-

ture of predator-prey, competitive, and mutualistic interactions.

2.1.2 Antagonistic ensemble

Here we define the antagonistic ensemble that we consider in this thesis, which is char-

acterised by predator-prey interactions, where

JijJji < 0, (2.6)

which generalises anti-symmetric matrices since the antagonistic ensemble studied here

has generally |Jij| 6= |Jji|, whereas anti-symmetric matrices are defined by Jij = −Jji.
The joint probability density of antagonistic matrices we refer to in this work is given by

p(u, l) = pA(u, l) =
1

2
p̃(|u|)p̃(|l|) [θ(u)θ(−l) + θ(−u)θ(l)] , (2.7)

where p̃ is a probability density with positive support R+ = ([0,∞)) and normalised to

one. The θ-s are the Heaviside functions defined by

θ(x) =

{
0 x < 0,

1 x ≥ 0,
(2.8)

that imposes the opposite sign constraint JijJji < 0 for each pair of indices i 6= j, which

account for the sign constraints of predator-prey interactions. The antagonistic prob-

ability distribution in Eq. (2.7) is not the most general joint distribution that one can

consider to study antagonistic systems. However, our research aims to characterise the

properties of the spectra of antagonistic random matrices characterised by having oppo-
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site entries with opposite sign, in order to account for the predator-prey signs constraint

in Eq. (2.6). Accordingly, the choice for the model in Eq. (2.7) fully includes this feature.

Finally, it is important to observe that antagonistic matrices defined by Eq. (2.7) are a

generalisation of anti-symmetric matrices, since generally |u| 6= |l|.

Schematic summary of the assumptions on Eq. (2.7) Here we provide

a schematic summary (see Appendix A.3 for a more detailed discussion) of the

assumptions that we considered for defining Eq. (2.7) from, and including the

assumptions therein, Eqs. (2.1) and (A.11):

1. i.i.d. pairs pA
i,j(Jij, Jji) = pA(Jij, Jji) = pA(u, l);

2. internal permutation symmetry pA(u, l) = pA(l, u);

3. independence of magnitudes p2(u, l)θ(−ul) = p1(u)p1(l)θ(−ul);

4. predator-prey symmetry p1(x) = p1(−x) = p̃(|x|)/2.

In particular, 2) implies that 〈u〉pA = 〈l〉pA , and 4) implies that

〈u〉pA = 0, (2.9)

such that on average the interactions of a node are balanced, which is a reasonable

assumption for systems dominated by predator-prey interactions [Allesina and

Tang, 2012].

We remark that the hypotheses 3) and 4) are made only for simplicity of our study,

but our theory can deal with the hypotheses 1) and 2), which are intrinsic in the

model in Eq. (2.1) for a more general pA in Eq. (A.11).

2.1.3 Mixture ensemble

We define now the mixture ensemble that we consider in this thesis, which is characterised

by a mixture of predator-prey interactions, as in Sec. 2.1.2, for which

JijJji < 0, (2.10)

mutualistic interactions, for which

Jij > 0 and Jji > 0, (2.11)

and competitive interactions, for which

Jij < 0 and Jji < 0. (2.12)
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By following the same logic used to define the antagonistic ensemble, within the assump-

tions discussed in Appendix A.3 and summarised in Sec. 2.1.2, the following probability

distribution characterises the mixture ensemble, i.e.,

p(u, l) = pM(u, l) = πApA(u, l) + (1− πA)pCM(u, l), (2.13)

where πA ∈ [0, 1] accounts for the density of antagonistic interactions, pA is the dis-

tribution defined in Eq. (2.7) that models predator-prey interactions, and pCM is the

distribution

pCM(u, l) = p̃(|u|)p̃(|l|)
[
πMθ(u)θ(l) +

(
1− πM

)
θ(−u)θ(−l)

]
, (2.14)

that includes both mutualistic and competitive interactions, with densities determined

by πM ∈ [0, 1]. Hence, for mixture matrices the couple (u, l) has a predator-prey-like

interaction with probability πA, while it is mutualistic with probability (1 − πA)πM or

competitive with probability (1− πA)(1− πM).

2.1.4 Variance and covariance of the antagonistic and mixture probability

distributions

In Appendix A.4 we derive the relations between the moments of the joint probability

distributions p(u, l) with support on R2 in terms of the moments of the auxiliary prob-

ability distribution p̃ with support on R+, for the antagonistic distribution pA in the

Eq. (2.7), and the mixture distribution pM in the Eqs. (2.13) and (2.14). Here we show

only the variance and the covariance (for the derivation see Appendix A.4), for general

πA, πM ∈ [0, 1], which will be used in Sec. 2.2.

The variance of pA(u, l) in Eq. (2.7) reads

〈
u2
〉
pA
−
�
�
��>

0
〈u〉2pA =

〈
u2
〉
p̃
, (2.15)

and the covariance of pA(u, l) reads

〈ul〉pA −����
��:0

〈u〉pA 〈l〉pA = −〈u〉p̃ 〈l〉p̃ . (2.16)

From Eq. (2.13) the variance of pM(u, l) reads

〈
u2
〉
pM
− 〈u〉2pM =

〈
u2
〉
p̃
− 4

(
1− πA

)2
(
πM − 1

2

)2

〈u〉2p̃ , (2.17)

which correctly recovers the variance of pA in Eq. (A.20) when πA = 1, and the covariance
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of pM(u, l) reads

〈ul〉pM − 〈u〉pM 〈l〉pM = 〈u〉p̃ 〈l〉p̃

[
1− 2πA − 4(1− πA)2

(
πM − 1

2

)2
]
, (2.18)

which correctly recovers the covariance of pA in Eq. (A.21) when πA = 1.

2.2 Two reference examples for this thesis: Model A and Model

B

Here we specify the probability distributions introduced in the general model in Eq. (2.1)

that we typically consider in this thesis. First in regards to the network structure,

i.e., pdeg, and then in regards to the interactions, i.e., the probability p̃ in the joint

probabilities for antagonistic matrices in Eq. (2.7), and for the mixture matrices in

Eqs. (2.14) and (2.13), together with the parameters πA, πM. As we discuss below, the

choices of these parameters define the reference models of this thesis, which we will often

refer to in our studies at the moment of numerical implementations, that we call Model

A and Model B.

As for the network structure, we often consider Erdős-Rényi graphs within the

G(N, p) model (see Sec. 1.5), where N is the size of the graph and p the probability

of two nodes to be interacting. As we discussed at the beginning of this chapter, in

this thesis we focus on the finite connectivity regime, i.e., p = c/(N − 1) and α = 0 in

Eqs. (1.33)-(1.36), with mean degree c. The prescribed degree distributions are, in this

case, binomial for finite N in Eqs. (1.33), poissonian in the N →∞ limit in Eq. (1.36).

This defines the pdeg of both Model A and Model B. Sometimes, when specified, we also

consider random regular graphs, which are defined by pdeg(k) = δk,c, or degree distribu-

tions which are linear combinations of random regular and of Erdős-Rényi graphs.

Let us now discuss the choices for the interactions distributions parameters. As for

the interaction strength, we typically consider the p̃ in Eqs. (2.7) and (2.13) to be a

uniform distribution with support on [0, b], namely,

p̃(x) =
1

b
[1− θ(x− b)] , x ≥ 0, (2.19)

where the value of b is chosen such that the variance of pA(u, l) in Eq. (2.7), by Eq. (2.15),

is one, i.e.

1 =
〈
u2
〉
p̃

=
1

b

∫ b

0

du u2 =
b2

3
, (2.20)

which gives b =
√

3. These choices of b, p̃ complete the definition of the Model A, which

is an antagonistic ensemble.

We consider, within the mixture ensemble in Sec. 2.1.3, the probability p̃ to be the

uniform distribution in Eq. (2.19) that we chose for Model A, with b =
√

3. We also
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choose an equal probability for an interaction to be mutualistic or competitive, i.e.,

πM = 0.5 in Eq. (2.14), and one has that the interactions are balanced on average, i.e.,

〈u〉pM = 0, (2.21)

similarly to the antagonistic model (see Eq. (2.9)). Accordingly, for this choice of πM,

the variance of pM(u, l) in Eq. (2.17) simplifies to

〈
u2
〉
pM
−��

��*
0

〈u〉2pM =
〈
u2
〉
p̃

= 1, (2.22)

which equals the variance of pA(u, l) in Eq. (2.15), independently from the value of πA,

and the covariance of pM(u, l) in Eq. (2.18) simplifies to

〈ul〉pM −����
���:0

〈u〉pM 〈l〉pM = 〈u〉p̃ 〈l〉p̃
(
1− 2πA

)
=
b2

4

(
1− 2πA

)
. (2.23)

Within the mixture ensemble, we are interested to study how a small fraction of mutu-

alistic or competitive interactions impacts a preponderance of predator-prey interaction,

and so we set πA = 0.9; accordingly, the covariance of pM(u, l) in Eq. (2.23) reads

〈ul〉pM = −4

5

b2

4

= −b
2

5
= −3

5
. (2.24)

Finally, the main difference between model A and model B is that all couples in model

A interact in a predator-prey dynamics, while in model B a small fraction of interacting

couples are either mutualistic or competitive, with same small probability.



Chapter 3

Cavity method for the spectral distribution of

sparse non-Hermitian random matrices

In this chapter we summarise the cavity method, which is a method to determine the

spectral distribution of sparse non-Hermitian random matrices [Metz et al., 2010, 2019;

Rogers et al., 2008; Rogers and Pérez Castillo, 2009]. The cavity method originated from

the physics of spin glasses [Mézard et al., 1987] and its core ideas have been developed in

other contexts such as in computer science [Chertkov et al., 2010; Krzakala et al., 2015;

Pearl, 1988].

This chapter is organised as follows. Sections 3.1-3.5 derive a set of closed equa-

tions named cavity equations for sparse non-Hermitian random matrices that are locally

treelike, and present a formula for the spectral distribution expressed in terms of the

solution of these equations. Finally, in Sec. 3.6 we discuss a class of solutions of the

cavity equations from which the boundary of the support of the spectral distribution

can be determined.

3.1 The empirical spectral density in terms of the resolvent

Here we introduce a formula for the empirical spectral density in Eq. (1.19) of a matrix

A in terms of its resolvent, on which the rest of the chapter is based.

The resolvent GA(z) of a matrix A is defined as 1

GA(z) := (A− z1N)−1, with z ∈ C \ σ(A), (3.1)

where here ()−1 denotes the matrix inverse. As we show in Appendix A.5, it is possible

to express the empirical spectral density in terms of the resolvent GA(z) in Eq. (3.1) as

follows

ρA(z) = − 1

πN
∂z̄ Tr GA(z), (3.2)

1An alternative but equivalent definition of the resolvent can be found in literature, f.e. [Sommers
et al., 1988], with an opposite sign
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where Tr is the trace operator, and where the partial derivative ∂z̄ is the following

complex conjugate derivative, i.e.,

∂z̄ :=
∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
. (3.3)

We observe that the resolvent GA(z) in Eq. (3.1) is well defined only outside the

spectrum of A. Since the complex conjugate derivative of a complex-valued function is

zero where the function is analytic (see Appendix A.6), the left hand side of Eq. (3.2) is

zero when the diagonal terms of the resolvent are analytic, which is the case outside the

spectrum σ(A).

Eq. (3.2) holds for both hermitian and non-Hermitian matrices A. However, the

analysis differentiates between these two cases when performing the limit for N → ∞,

as it is discussed in next section.

3.2 Infinite size limit: the Hermitisation method

We present now a regularisation of Eq. (3.2) that allows us to perform the limit for

N →∞. The final aim is to obtain the limiting spectral distribution ρ of the empirical

spectral density ρA(z), i.e.,

ρ(z) := lim
N→∞

ρA(z). (3.4)

We assume that the spectral distribution ρ is self-averaging (hence deterministic) and

that it is continuous, similarly to other random matrices ensembles, as discussed in Ch. 1,

and therefore the limit N →∞ in Eq. (3.4) exists.

The formula in Eq. (3.2) can not be used as it is, in the limit N →∞. It requires a

bit more elaboration. Indeed, Eq. (3.2) in the limit N →∞ would give an infinite sum of

delta distributions, while from the assumptions above it is expected to be a continuous

distribution. In order to find a regular form of ρ, one has to find first an opportune

analytic continuation ρA(z, η), i.e., a regularisation of the empirical spectral density in

Eq. (3.2), so that

ρA(z) = lim
η→0

ρA(z, η). (3.5)

Second, although a rigorous proof of the exchange of limits for general non-Hermitian

matrices remains an open problem [Metz et al., 2019; Rogers, 2010b; Trefethen et al.,

2005], we assume here and in the rest of the thesis that one can take first the limit

N →∞, and then the limit η → 0, so that the limiting spectral distribution is given by

ρ(z) = lim
η→0

lim
N→∞

ρA(z, η). (3.6)

We remark that the regularisation in Eq. (3.5) is not needed if the goal is to study the

discrete spectrum of a matrix of finite size N , whereas it is an intermediate step towards

the determination of the limiting spectral distribution for N →∞. Accordingly, we focus
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now on finding an analytic continuation ρA(z, η) as in Eq. (3.5), aware that the final aim

is to use such regularisation as in Eq. (3.6). While in the Hermitian case it is simpler

to find a regularisation of the resolvent, since the support of the spectrum for hermitian

matrices has zero Lebesgue measure in C, a particular method has been developed for

non-Hermitian matrices, where the spectrum has non-zero Lebesgue measure in C: we

summarise below the Hermitisation method [Feinberg and Zee, 1997; Girko, 1985; Metz

et al., 2019; Rogers, 2010a; Rogers and Pérez Castillo, 2009], which maps the non-

Hermitian problem to a Hermitian approach and it provides an opportune regularisation

of for the empirical spectral density as in Eq. (3.2).

The first step of the Hermitisation method, is to double the size N of a given non-

Hermitian matrix A to the following 2N × 2N Hermitian matrix

H0(z; A) :=

(
0N z1N −A

(z1N −A)† 0N

)
, (3.7)

made of four N ×N blocks. The second step is to add a diagonal regulator η to H0 as

follows

Hη(z; A) : = iH0(z; A) + η12N

=

(
η1N i(z1N −A)

i(z1N −A)† η1N

)
, (3.8)

which we call Hermitisation matrix, and where both H0 and Hη are made of four N ×N
blocks.

The utility of the Hermitisation matrix is that the lower left block of H−1
η for small

η reads (see the next page for a derivation)

− i(z1N −A)†
[
η21N + (z1N −A)(z1N −A)†

]−1
= iGA(z) +O(η2). (3.9)

Hence it provides the resolvent, needed in the empirical spectral density as in Eq. (3.2),

at the leading order in η.

Accordingly, the regularisation of the empirical spectral density in Eq. (3.2) given by

the Hermitisation method reads

ρA(z, η) =
i

πN
∂z̄

N∑
j=1

[
H−1
η (z; A)

]
j+N,j

, (3.10)

which in the end provides the limiting spectral distribution in Eq. (3.6), as discussed

above. We remark that for all z ∈ C, including the spectrum σA(z), and for η 6= 0, the

Hermitisation matrix is invertible, and then the right hand side of Eq. (3.10) is continuous

in z. In this sense ρA(z, η) provides a regularisation for the empirical spectral density in

in Eq. (3.2) of general non-Hermitian matrices.
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Note that there exists another formula for the empirical spectral density2 , which

is equivalent to Eq. (3.2), of non-Hermitian random matrices [Feinberg and Zee, 1997;

Rogers and Pérez Castillo, 2009]. However, the regularisation in this other formula is also

expressed in terms of Hη in Eq. (3.8), which highlights the importance of the Hermitian

method as the reference regularisation in the study of non-Hermitian random matrices.

2which in turn is based on a representation of the delta in the complex plane that is different, but
equivalent, to the representation of the delta on which Eq. (3.2) is based
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Derivation of Eq. (3.9) We use here the following formula for the inversion of

a block matrix A (see Appendix A.7), that we name Schur formula, i.e.,

A−1 =

(
sd −sdbd−1

−d−1csd d−1csdbd−1 + d−1

)
, (3.11)

where sd := (a − bd−1c)−1 is the Schur complement of d. Therefore, the inverse

of block matrix Hη, which exits for η 6= 0, can be computed straightforwardly. We

are interested in the lower left block of H−1
η , and here we want to show that it is

equal to the left hand side of Eq. (3.9). In order to apply Eq. (3.11) to H−1
η , we

identify (see Sec. A.7)

a := η1N , (3.12)

b := i(z1N −A), (3.13)

c := i(z1N −A)†, (3.14)

d := η1N , (3.15)

from which the Schur complement sd reads

sd =

[
η1N +

(z1N −A)1N(z1N −A)†

η

]−1

. (3.16)

The lower left block of H−1
η is given by −d−1csd, i.e.,

−d−1csd = − i1N
η

(z1N −A)†
[
η1N +

(z1N −A)1N(z1N −A)†

η

]−1

= −i(z1N −A)†
[
η21N + (z1N −A)(z1N −A)†

]−1
, (3.17)

which coincides with the left hand side of Eq. (3.9). In order to obtain the right

hand side of Eq. (3.9), we consider the inversion formula of a perturbed matrix,

i.e.,

(1N + αB)−1 = 1N − αB +O(α2), (3.18)

which can be applied to the right hand side of Eq. (3.17), with η2 = α and

B =
[
(z1N −A)(z1N −A)†

]−1
, as follows

−i(z1N −A)†B
(
η2B + 1N

)−1
= −i(z1N −A)†B(1N +O(η2))

= −i(z1N −A)−1 +O(η2)

= iGA(z) +O(η2), (3.19)

which completes the derivation of Eq. (3.9).
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3.3 Inversion of the Hermitisation matrix for general matrices

In order to evaluate the inverse of the Hermitisation matrix in Eq. (3.10), we consider a

convenient permutation of the rows and columns of Hη in Eq. (3.8). The action of this

permutation is defined as

(j+αN, k+ βN)→ (2j− 1 +α, 2k− 1 + β), ∀ j, k = 1, . . . , N, ∀α, β = 0, 1, (3.20)

that puts next to each other the elements of the nodes (j, k), which resulted to be

separated by N rows or/and columns in Hη, as a consequence of the size extension of

the Hermitisation in Eq. (3.8). We represent this permutation with a orthogonal matrix

P, i.e., PPT = 1, that acts on the Hermitisation matrix as follows

H̃ := PHηP
T, (3.21)

which results to be a matrix made of N2 blocks H̃j,k, where each of these blocks is a

two-by-two matrix defined as

H̃jk :=


[
H̃
]

2j−1,2k−1

[
H̃
]

2j−1,2k[
H̃
]

2j,2k−1

[
H̃
]

2j,2k

 =

(
[Hη]j,k [Hη]j,k+N

[Hη]j+N,k [Hη]j+N,k+N

)
, (3.22)

where j, k = 1, . . . , N . Making explicit the elements of the Hermitisation matrix in

Eq. (3.8), the two-by-two diagonal blocks in Eq. (3.22) read

iH̃j = Ajj − zη, (3.23)

where we set for simplicity the notation H̃j := H̃jj, and the off-diagonal blocks in

Eq. (3.22) read

iH̃jk = Ajk, (3.24)

where

Ajk :=

(
0 Aj,k

Āk,j 0

)
, zη =

(
−iη z

z̄ −iη

)
. (3.25)

From Eqs. (3.24)-(3.25) one can think at the off-diagonal H̃ as an adjacency matrix made

of two-by-two blocks H̃jk, which are non-zero if and only if there is a link between j and k

(it can be (j, k), or (k, j)). In particular, if there is a graph structure in {Aij} = {CijJij},
encoded in the adjacency matrix C, then for one has that H̃j 6=k 6= 0 if and only if Cj 6=k = 1

or Ck 6=j = 1, while the diagonal H̃j 6= 0 for finite η.

The action of the permutation in Eq. (3.21) commutes with the matrix inverse oper-

ation, i.e.,

H̃−1 = PH−1
η PT. (3.26)

The commutation property in Eq. (3.26) translates into the fact that the action of the
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permutation on the matrix inverse H−1
η is the same as on the Hermitisation matrix in

Eq. (3.22), i.e., it puts next to each other the elements of the nodes (j, k). Accordingly,

H̃−1 results to be a matrix made of N2 blocks Gjk, where each of these blocks is a

two-by-two matrix defined as

Gjk := i


[
H̃−1

]
2j−1,2k−1

[
H̃−1

]
2j−1,2k[

H̃−1
]

2j,2k−1

[
H̃−1

]
2j,2k

 = i

( [
H−1
η

]
j,k

[
H−1
η

]
j,k+N[

H−1
η

]
j+N,k

[
H−1
η

]
j+N,k+N

)
, (3.27)

where j, k = 1, . . . , N , and we note that we added by convention the prefactor i in the

definition of Gjk (see Eq. (3.28)). The two-by-two matrices Gjk are the key objects of

this section, as we will show below. From Eq. (3.10) one recognises that the diagonal

blocks Gjj, which for simplicity we abbreviate into Gj are related to the regularisation

of empirical spectral density as follows

ρA(z, η) =
1

πN
∂z̄

N∑
i=1

[Gj]21 , (3.28)

which highlights the role of the two-by-two matrices Gj for our study, and we discuss

below how they can be determined. We note that by putting the prefactor i in the

prefactor of Eq. (3.27), it does not appear in the formula Eq. (3.28). The Eq. (3.27) allows

to evaluate systematically the inverse H̃−1 by decomposing the problem in determining

the two-by-two matrices Gjk. As we show below, this can be achieved by relating the

Gjk to the two-by-two matrices Hjk by using the Schur formula in Eq. (3.11). In order to

reveal this strategy, we first rewrite the matrix iH̃−1, which is of size 2N × 2N , in terms

of the blocks Hjk and Gjk, which are matrices of sizes 2× 2, as follows

iH̃−1 = i



H̃1 . . . H̃1N

...
. . .

...

H̃j

. . .

H̃N1 . . . H̃N



−1

=



G1 . . . G1N

...
. . .

...

Gj

. . .

GN1 . . . GN


, (3.29)

where we remind that we chose for simplicity the notation H̃j,Gj for the diagonal blocks

H̃jj,Gjj, respectively. Now, by using again the fact that an operation of permutation of

rows and columns commutes with the inverse operator, similarly to Eq. (3.26), we can

move to the top left, i.e., at the first row and column, the blocks referring to the node j
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in Eq. (3.29) as follows

H̃j H̃j1 . . . H̃j(j−1) H̃j(j+1) . . . H̃jN

H̃1j

...

H̃(j−1)j H̃(j)

H̃(j+1)j

...

H̃Nj



−1

=

− i



Gj Gj1 . . . Gj(j−1) Gj(j+1) . . . GjN

G1j G1 . . . G1N

...
...

. . .
...

G(j−1)j Gj−1

G(j+1)j Gj+1

...
. . .

GNj GN1 . . . GN


, (3.30)

where H̃(j) is a (2(N − 1) × 2(N − 1)) submatrix3 of H̃ obtained by deleting from H̃

the (two) rows and (two) columns crossing the (two-by-two) matrix H̃j. Accordingly, by

following Eqs. (3.26)-(3.22), H̃(j) corresponds to removing the (2j − 1)-th and the 2j-th

rows and columns of H̃, and equivalently the j-th and the j + N -th rows and columns

of H.

The key point of Eq. (3.30) is to focus on the Gj on the right hand side, and to

recognise that the left hand side is the inverse of a block matrix: accordingly, we can

use the Schur complements approach in Sec. A.7 and apply the formula in Eq. (3.11),

through the following mapping

a := H̃j, (3.31)

b :=
(

H̃j1, . . . , H̃j(j−1), H̃j(j+1), . . . , H̃jN

)
, (3.32)

c :=
(

H̃1j, . . . , H̃(j−1)j, H̃(j+1)j, . . . , H̃Nj

)T

, (3.33)

d := H̃(j), (3.34)

sd = (a− bd−1c)−1 = −iGj, (3.35)

where sd is the Schur complement of d. It is evident, from the evaluation of sd, that the

inversion of d is the same problem that we started in Eq. (3.29), but with the removal

3also known as cavity matrix
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of j-th rows and columns, i.e.,

i
(
H̃(j)

)−1

= i



H̃1 . . . H̃1(j−1) H̃1(j+1) . . . H̃1N

...
. . .

...

H̃(j−1)1 H̃j−1

H̃(j+1)1 H̃j+1

...
. . .

H̃N1 . . . H̃N



−1

=:



G
(j)
1 . . . G

(j)
1(j−1) G

(j)
1(j+1) . . . G

(j)
1N

...
. . .

...

G
(j)
(j−1)1 G

(j)
j−1

G
(j)
(j+1)1 G

(j)
j+1

...
. . .

G
(j)
N1 . . . G

(j)
N


= id−1, (3.36)

where the prefactor i used to define the elements G
(j)
ii′ is put for consistency with Eq. (3.27)

and Eq. (3.29), the superscript (j) in the G(j)-s distinguishes them from the elements

of the right hand side of Eq. (3.30), i.e., under general assumptions G
(j)
kl 6= Gkl, for any

k, l 6= j.

Now, we can write Eq. (3.35) in terms of Eqs. (A.75)-(3.34) and of Eq. (3.36), which

reads

Gj =

−iH̃j +
N∑

k=1,(k 6=j)

N∑
l=1,(l 6=j)

H̃jkG
(j)
kl H̃lj

−1

, (3.37)

with j = 1, . . . , N , where the two sums made explicit the matrix multiplications in

Eq. (3.35). By using the definitions (3.23) and (3.24), the relation between the G-s and

the G(j)-s is given by the following equation

Gj =

zη − Ajj −
N∑

k=1,(k 6=j)

N∑
l=1,(l 6=j)

AjkG
(j)
kl Alj

−1

, (3.38)

with j = 1, . . . , N , where zη,Ajk are two-by-two matrices defined in Eq. (3.25). The set

of Eqs. (3.38), for each node j, are known as cavity equations or generalised resolvent

equations for non-Hermitian random matrices. The expression cavity refers to the fact

that the node j (and the corresponding rows and columns) has been removed in the

H̃, leaving a cavity in the first graph, which is then also called cavity graph. The set

of Eqs. (3.38) expresses the two-by-two matrix Gj as a function, among the others, of

the two-by-two matrices G
(j)
kl , which are the (N − 1)2 blocks elements of the inverse

i
(
H̃(j)

)−1

, as in Eq. (3.36). Accordingly, these equations are not closed yet, since the

G
(j)
kl have to be determined. In the next section we show some characterisations of the
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matrices i
(
H̃(j)

)−1

and i
(
H̃
)−1

that help in closing the equations above, when there is

a network structure.

3.4 Simplifications for trees

In the previous section we focused on the diagonal blocks Gj of Eq. (3.30), since we

are interested in the spectral density in Eq. (3.28). However, we observe now that the

off-diagonal blocks Gkl and G
(j)
kl satisfy important properties when there is a network

structure, which results in simplifying Eq. (3.37) when the graph is a tree. In particular,

we show here that for a tree the number of non-zero terms in the sums in the right hand

side of Eq. (3.37) is significantly reduced.

We consider now the graph structure to be encoded in an adjacency matrix C such

that

Aij = CijJij, (3.39)

and we denote the associated graph by G.

We now focus on the off-diagonal blocks Gkl. While the off-diagonal blocks H̃kl in

Eq. (3.22) are non-zero if and only if Ckl = 1 or Clk = 1, the off-diagonal blocks Gkl of the

inverse iH̃−1 can be non-zero even if there is not a link between k and l. In particular,

the implication: if Gk 6=l is non-zero then Ckl = 1 or Clk = 1 is generally false. Indeed,

by applying recursively the Schur formula in Eq. (3.11) for the off-diagonal blocks Gkl,

similarly to Eq. (3.36), it is possible to show that a weaker condition relates the graph

structure to the Gkl for k 6= l, i.e.,

Gkl 6= 0 =⇒ the nodes k and l belong to the same connected component in the

graph G. (3.40)

We observe that the condition on the right is equivalent (see Sec. 1.4.1) to the existence

of a path of any length in the graph passing through the nodes k and l, which happens

when
∑

i≥0(Ci+1)kl > 0.

We consider now the off-diagonal blocks G
(j)
kl in Eq. (3.37). They satisfy the impli-

cation in Eq. (3.40) in the place of Gkl, where G is replaced by the cavity matrix G(j),

i.e.,

G
(j)
kl 6= 0 =⇒ the nodes k and l belong to the same connected component in the

cavity graph G(j). (3.41)

We focus now on the term in the sums of Eq. (3.37), i.e.,

H̃jkG
(j)
kl H̃lj, with k, l 6= j, (3.42)
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for a fixed j, and in particular we are interested to find necessary conditions to be non-

zero. First, the presence of H̃jk and H̃lj ensures that nodes k and l have to be among

the neighbours of node j, i.e,

H̃jk, H̃lj 6= 0 =⇒ k, l ∈ ∂j. (3.43)

Moreover, if k = l then the diagonal terms satisfy the following implication

H̃jkG
(j)
k H̃kj 6= 0 =⇒ k ∈ ∂j. (3.44)

Second, we consider the off-diagonal terms in Eq. (3.42) with k 6= l. In this case, one

can verify that the intersection of the conditions in Eqs. (3.41),(3.43) can be expressed

with a condition on the cycles in the full graph G, i.e,

H̃jkG
(j)
kl H̃lj 6= 0 =⇒ ∃ cycle in G of the kind j → k → {i} → l→ j, (3.45)

with k 6= l and k, l 6= j, and where here we denoted by {i} any path of any length larger

than one along distinct vertices i 6= j, k, l.

We show now the implication in Eq. (3.45), by considering a tree graph. Indeed, by

definition of trees (see Sec. 1.4.1), the condition on the right is always false, and we show

now that the only non-zero terms in Eq. (3.42) are of the kind k = l ∈ ∂j.
Given a central node j, one can verify that H̃(j) is a block diagonal matrix (up

to a permutation), with |∂j| blocks, each of the blocks corresponds to the connected

components that become disconnected from each other after the removal of node j.

Since from the Schur formula the inverse of a block diagonal matrix is block diagonal,

the off-diagonal blocks of H̃(j) lead to zero G
(j)
kl off-diagonal, where k and l belong to two

connected components that are disconnected from each other. The size of the remaining

blocks on the diagonal is equal to the size of the connected components in which they

correspond to. Each of these component is a (connected) tree. Using again the Schur

formula for these blocks on the diagonal of H̃(j), one obtains that the blocks G
(j)
pq , with

p 6= q in a given component, are in general non zero, but either H̃jp or H̃qj are zero on a

tree. Indeed, H̃jp and H̃qj (q 6= p) are both non-zero if and only if there exists one cycle

of the kind: j → k → {i} → l→ j, which never happens on a tree by definition. So the

only non-zero terms in Eq. (3.42) are of the kind H̃jkG
(j)
k H̃kj, with k ∈ ∂j.

If j is a peripheral node, i.e., with |∂j| = 1, the matrix H̃(j) has no block structure,

but the only non-zero terms in Eq. (3.42) are of the kind H̃jkG
(j)
k H̃kj, with k ∈ ∂j, since

Eq. (3.43) is possible only for k = l when |∂j| = 1.

We show in the next section how the Eqs. (3.38) can be closed when the underlying

graph G is locally treelike, in light of the properties discussed in this section.
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3.5 Spectral distribution of locally treelike matrices

Here we derive the spectral distribution for locally treelike matrices. In this work, when

we say that a matrix is locally treelike, or it has a locally treelike structure, when its

underlying graph has this property (see Sec. 1.4.2.2). For this class of sparse matrices the

derivation of the Sec. 3.3 simplifies, since the inversion algorithm of the Hermitisation

matrix provides closed recursive equation in light of Sec. 3.4, as we show below.

In the previous section, we have shown that for a tree of size N the only non-zero

terms in Eq. (3.42) are given by terms of the kind

H̃jkG
(j)
k H̃kj, with k ∈ ∂j,∀j = 1, . . . , N. (3.46)

Therefore, there are only |∂j| non-zero square diagonal blocks G
(j)
k , with k 6= j, one

for each of the neighbours of j, that play a role to determine Gj in the Eq. (3.37).

Accordingly, for any node j, we have that the sums in Eqs. (3.37)-(3.38) restrict to

the neighbourhood of node j only, i.e., (for simplicity we apply this straightforward to

Eq. (3.38))
N∑

k=1,(k 6=j)

N∑
l=1,(l 6=j)

AjkG
(j)
kl Alj =

∑
k∈∂j

JjkG
(j)
k Jkj, (3.47)

where

Jjk :=

(
0 Jj,k

J̄k,j 0

)
. (3.48)

We note that we derived Eq. (3.47) by assuming C to be a tree of size N ; however, we

are interested in locally treelike graphs, for which the equality in Eq. (3.47) is valid in

the N →∞ limit almost surely. As observed in Sec. 1.4.2.2, there exists a finite number

of finite (short) cycles in the N → ∞ limit, for locally treelike graphs. Hence, we can

see Eq. (3.47) as a good approximation for locally treelike graphs, according to which we

can say that with good approximation Eq. (3.38) for locally treelike matrices simplifies

to

Gj =

zη − Jjj −
∑
k∈∂j

JjkG
(j)
k Jkj

−1

, (3.49)

with j = 1, . . . , N , where Jjk is defined in Eq. (3.48) and zη defined in Eq. (3.25).

The Eqs. (3.38) are known as the first set of cavity equations or generalised resolvent

equations for locally treelike non-Hermitian random matrices [Metz et al., 2010, 2019;

Rogers et al., 2008; Rogers and Pérez Castillo, 2009]. They say that for every node j of a

locally treelike matrix the two-by-two matrix Gj defined in Eq. (3.27) is a function, among

the others, of the weights Jjk and of the diagonal blocks G
(j)
k , defined in Eq. (3.36), only

for the neighbours k belonging to the neighbourhood ∂j of j. However, the Eqs. (3.38)

are not closed yet, because the G
(j)
k have to be determined.

The strategy is to realise that the G
(j)
k , being the diagonal blocks of i

(
H̃(j)

)−1

,
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can be obtained through the same algorithm for which the Gj have been obtained from

Eq. (3.30), i.e., by inverting a block matrix. In this way we are going to build a system of

hierarchical recursive equations, as we show below. Since for consistency with Eq. (3.49)

we want to focus again on the neighbourhood of j, we consider at first the cavity matrix

i
(
H̃(`)

)−1

where the node ` has been removed. Second, as in Eq. (3.30), we isolate at the

top left of i
(
H̃(`)

)−1

the block G
(`)
j , while the remaining (N − 2)2 other blocks H̃ki with

k 6= `, j and i 6= `, j on the bottom right define the cavity matrix H̃(`,j). Let us now define

G
(`,j)
ki as the elements of the inverse i

(
H̃(`,j)

)−1

. As argued above, when determining G
(`)
j

with the Schur formula, the only non-zero terms H̃jkG
(`,j)
ki H̃ij with k 6= `, j and i 6= `, j,

are of the kind H̃jkG
(`,j)
k H̃kj with k ∈ ∂j \ {`}, almost surely for locally treelike graphs.

Accordingly, the equation that relates the G
(`)
j -s to the G

(`,j)
k -s, similarly to Eq. (3.49),

reads

G
(`)
j =

zη − Jjj −
∑

k∈∂j\{`}

JjkG
(`,j)
k Jkj

−1

, (3.50)

with j, ` = 1, . . . , N and j 6= `, where Jjk is defined in Eq. (3.48) and zη defined in

Eq. (3.25). It is evident now that Eqs. (3.49) and (3.50) lead to a system of hierarchical

recursive equations where the recursiveness is given by keep removing nodes to determine

cavity matrices. The advantage of locally treelikeness is to close the Eqs. (3.49) and (3.50)

with the approximation [Metz et al., 2019; Rogers and Pérez Castillo, 2009]

G
(`,j)
k = G

(j)
k , with k ∈ ∂j \ {`}, (3.51)

G
(`)
j =

zη − Jjj −
∑

k∈∂j\{`}

JjkG
(j)
k Jkj

−1

, (3.52)

with j, ` = 1, . . . , N and j 6= `, where Jjk is defined in Eq. (3.48) and zη is defined in

Eq. (3.25), and where the G
(j)
k are evaluated on the cavity graph obtained by the removal

of node j.

The idea behind Eq. (3.51) is that (see Fig. 3.1), for trees, for a fixed node j, its

neighbours k-s except of ` become disconnected in the cavity graph obtained by removing

node j; equivalently, the corresponding blocks G
(j)
k in the corresponding cavity matrix

become statistically uncorrelated. Consequently, the additional removal of node ` does

not have any effect on the neighbours k-s. The Eq. (3.51) and Eq. (3.47) are exact on

trees, while for locally treelike graphs hold almost surely locally. However, in the limit

N → ∞, the presence of long cycles of divergent length does not break the validity

of Eq. (3.51), since the correlations between two nodes in an infinite cycle vanish, and

hence the variables G
(j)
k in the cavity matrix become statistically uncorrelated, similarly

to what happens in finite trees as discussed above. Accordingly, excluding the effect of

the presence of a finite number of short cycles — i.e., of finite length in the limit N →∞
— the approximation in Eq. (3.51), together with the equations derived so far, becomes
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Figure 3.1: Illustration to support the reasoning behind the approximation in Eq. (3.51)
for locally treelike graphs: given the tree on the left and focusing on the neighbourhood
of a node j the nodes k1, k2, which form the neighbourhood ∂j except of `, are linked
indirectly through node j only. Accordingly, when on the right we consider the cavity
graph obtained by removing the node j, the three nodes k1, k2, ` belong to three different
connected components that are disconnected from each other. The key point is then that
the additional removal of node ` from the cavity graph on the right does not have any
further effect on the nodes k1, k2.

exact in the limit N →∞.

The Eqs. (3.49) and (3.52) are known as the the cavity equations or generalised

resolvent equations for non-Hermitian random matrices that are locally treelike. They

need to be solved, in the limit N → ∞ — for the locally treelike approximation to be

valid — and for a finite, but small, η. Indeed, first one needs to determine the G
(j)
k from

Eq. (3.52), and second the Gj from the Eqs. (3.49), both for a finite, but small, η. These

solutions are needed then to evaluate the limiting distribution ρ, defined in Eq. (3.4),

in the limits η → 0 and N → ∞ (as discussed in Sec. 3.2), of the regularisation of the

empirical spectral density in Eq. (3.28), i.e.,

ρ(z) = lim
η→0

lim
N→∞

1

πN

N∑
j=1

∂z̄ [Gj]21 , (3.53)

which we refer to as the spectral distribution of the locally treelike ensemble under study.

3.6 Boundary of the support of the spectral distribution

We present in this section the method to determine the boundary of the support of the

spectral distribution ρ in Eq. (3.53), by using stability properties of the solutions of the

cavity equations (3.49) and (3.52). The support of ρ is defined as

S := {z ∈ C : ρ(z) 6= 0}, (3.54)

where Φ denotes the closure of a set Φ.
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We briefly show here that the support S defined in Eq. (3.54), with the spectrum

σ(A) for general sparse non-Hermitian random matrices, and in particular that

the support coincides with the continuous part of the spectrum in the infinite size

limit. In the limit N →∞ the closure of the discrete spectrum σ(A) converges to

lim
N→∞

σ(A) = σc ∪ σp, (3.55)

where σc is the continuous part of the spectrum, while σp is the point part of

the spectrum [Reed et al., 1980]. The point spectrum is characterised by outliers,

that can be deterministic or stochastica. Typically [Neri and Metz, 2016, 2020], the

point spectrum has zero Lebesgue measure, since in the limit N →∞ in Eq. (3.53)

the outliers of the point spectrum give typically a sub-leading contribution to the

sum, which divided by N gives a zero contribution to the spectral distribution.

Accordingly, both stochastic and deterministic outliers are not seen by ρ, hence

they are not included in S. Finally, in relation with S, one has that

S = σc, (3.56)

i..e, the support set S coincides with the continuous part of the spectrum.

athe presence of a finite number of cycles of fixed length — as discussed earlier in this section,
they can exist in the N → ∞ limit, even for locally treelike graphs — may produce stochastic
outliers [Bonneau et al., 2017; Neri and Metz, 2020]

The strategy to obtain the boundary of the support S is as follows: first we introduce

and discuss the trivial solution that is defined outside the support in Sec. 3.6.1, second

we determine the boundary with the stability analysis of the trivial solution in Sec. 3.6.2.

3.6.1 The trivial solution of the cavity equations

We consider a class of solutions of the cavity equations (3.49) and (3.52) that, as we are

going to show, is valid outside the support S. This class, which we name trivial solution

[Metz et al., 2019], can be obtained by setting to zero the diagonal terms of the Gj-s and

of the G
(l)
j -s, i.e.,

G0
j :=

(
0 −ḡj
−gj 0

)
, G

0,(`)
j :=

(
0 −ḡ(`)

j

−g(`)
j 0

)
, (3.57)
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with j, ` = 1, . . . , N and j 6= `, and the apex 0 is added to refer to the trivial solution.

The off-diagonal terms −gj,−g(`)
j satisfy, respectively,

−gj =
1

z − Jjj +
∑
k∈∂j

Jjkg
(j)
k Jkj

, (3.58)

−g(`)
j =

1

z − Jjj +
∑

k∈∂j\{`}

Jjkg
(j)
k Jkj

, (3.59)

with j, ` = 1, . . . , N and j 6= `. It is straightforward to verify that Eqs. (3.57)-(3.59)

satisfy the cavity equations (3.49) and (3.52) for η = 0. The relevance of the trivial

solution in Eqs. (3.57)-(3.59) is its relation with the spectrum σ(A). Indeed, it is possible

to show [Metz et al., 2019], through the inversion algorithm via the Schur complements

(see Sec. A.7), that the diagonal elements of the resolvent GA(`)(z) of non-Hermitian

matrices, defined in Eq. (3.1), satisfy Eqs. (3.59) in the place of g
(`)
j . Accordingly, g

(`)
j in

Eq. (3.59) can be identified with the diagonal elements of the resolvent GA(z). Since the

resolvent GA(z) is well defined (analytic) for z /∈ σ(A), through this identifications it

means that the trivial solution is well defined for z /∈ σ(A). In particular, in the infinite

size limit the spectral distribution in Eq. (3.53) for the trivial solution G0
j satisfies

ρ(z) = − lim
N→∞

1

πN

N∑
j=1

∂z̄gj = 0 if z /∈ S, (3.60)

since the complex conjugate derivative of a function is zero where it is analytic (see

Appendix A.6.1).

Finally, what we have shown is the fact that the Eqs. (3.57)-(3.59) provide a solution

(which we name the trivial solution) of the cavity equations (3.49) and (3.52), for η = 0,

in a region of the complex plane that turns out to be the complementary set of S. This

reasoning is the core of the logical method to determine the support S of the spectral

distribution ρ, in the limN → ∞, for non-Hermitian random matrices that are locally

treelike. In the following section we discuss how the method of determining the boundary

of the support S can build upon this reasoning.

3.6.2 Linear stability analysis of the trivial solution

We want to understand here what happens to the trivial solution when we consider a

small but non-zero η. Indeed, in Eq. (3.53) the non-zero spectral distribution is obtained

from the nontrivial solution of the cavity equations for finite η, in the limit η → 0, and

defined inside the support S. We consider a diagonal perturbation of the trivial solution,

which is expected, following the reasoning above, to be stable only outside the support

S. The perturbation consists in adding the following diagonal two-by-two matrix ∆
(`)
j
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to the trivial solution G
0,(`)
j in Eq. (3.57), i.e.,

∆
(`)
j :=

(
ε

(`)
j 0

0 δ
(`)
j

)
, with |ε(`)j |, |δ

(`)
j | � 1, (3.61)

with j, ` = 1, . . . , N and j 6= `. The idea is now to perform a linear stability analysis

of the perturbed trivial solution in Eq. (3.61), in order to determine the domain of the

trivial solution. Inserting the perturbed G
(`)
j in Eq. (3.52) we have that

G
0,(`)
j + ∆

(`)
j =

(
ε

(`)
j −ḡ(`)

j

−g(`)
j δ

(`)
j

)
=

=

( 0 z − Jjj
z̄ − J̄jj 0

)
−

∑
k∈∂j\{`}

(
0 Jjk

J̄kj 0

)(
ε

(j)
k −ḡ(j)

k

−g(j)
k δ

(j)
k

)(
0 Jkj

J̄jk 0

)−1

(3.62)

=


−

∑
k∈∂j\{`}

δ
(j)
k |Jjk|

2 z − Jjj +
∑

k∈∂j\{`}

g
(j)
k JjkJkj

z̄ − J̄jj +
∑

k∈∂j\{`}

ḡ
(j)
k J̄jkJ̄kj −

∑
k∈∂j\{`}

ε
(j)
k |Jkj|

2


−1

=


−

∑
k∈∂j\{`}

ε
(j)
k |Jkj|

2 −z + Jjj −
∑

k∈∂j\{`}

g
(j)
k JjkJkj

−z̄ + J̄jj −
∑

k∈∂j\{`}

ḡ
(j)
k J̄jkJ̄kj −

∑
k∈∂j\{`}

δ
(j)
k |Jjk|

2


D1 −D2

, (3.63)

where we defined

D1 :=

 ∑
k∈∂j\{`}

δ
(j)
k |Jjk|

2

 ∑
k∈∂j\{`}

ε
(j)
k |Jkj|

2

 = O(εδ) (3.64)

D2 :=

∣∣∣∣∣∣z − Jjj +
∑

k∈∂j\{`}

g
(j)
k JjkJkj

∣∣∣∣∣∣
2

=
∣∣∣g(l)
j

∣∣∣−2

, (3.65)

and where we used that the g
(l)
j -s satisfy Eq. (3.59), with j, ` = 1, . . . , N and j 6= `. We

see that the denominator in Eq. (3.63) can be expanded to the leading order in εδ as

follows

1

D1 −D2

= −
∣∣∣g(l)
j

∣∣∣2 +O(εδ), (3.66)
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so by setting the diagonal elements of both sides of Eq. (3.63) to be equal we get

ε
(`)
j =

∣∣∣g(l)
j

∣∣∣2 ∑
k∈∂j\{`}

ε
(j)
k |Jkj|

2 +O(ε2δ), (3.67)

δ
(`)
j =

∣∣∣g(l)
j

∣∣∣2 ∑
k∈∂j\{`}

δ
(j)
k |Jjk|

2 +O(εδ2), (3.68)

which decouple at the leading orders in ε, δ. Finally, the linear stability analysis of the

perturbed trivial solutions leads to the two following decoupled systems of self-consistent

equations for the sets of variables {ε(`)j }, {δ
(`)
j }

ε
(`)
j =

∣∣∣g(l)
j

∣∣∣2 ∑
k∈∂j\{`}

ε
(j)
k |Jkj|

2, (3.69)

δ
(`)
j =

∣∣∣g(l)
j

∣∣∣2 ∑
k∈∂j\{`}

δ
(j)
k |Jjk|

2, (3.70)

with j, ` = 1, . . . , N and j 6= `, where the g
(`)
j -s satisfy the self-consistent equations

− g(`)
j =

1

z − Jjj +
∑

k∈∂j\{`}

Jjkg
(j)
k Jkj

, (3.71)

with j, ` = 1, . . . , N and j 6= `.

The region of the complex plane where the solutions of Eqs. (3.69)-(3.70) remain

small and the perturbation is reabsorbed to zero defines the complementary set of the

support S of the spectral distribution ρ. We observe that, although the Eqs. (3.69)-(3.70)

are decoupled in the two sets of variables the sets of variables {ε(`)j } and {δ(`)
j }, these

last two sets of variables are not generally statistically independent, through the g
(`)
j -s,

and when the weights Jjk, Jkj are dependent random variables and drawn from a joint

p(Jjk, Jkj), as it considered in this thesis.

In Ch. 4 we implement this theory to determine the boundary of the ensembles

studied in this thesis, i.e., the Model A and Model B defined in Ch. 2.
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3.7 Summary of this chapter

We determined the spectral distribution in Eq. (3.53) for sparse and non-Hermitian

random matrices on locally treelike graphs. The method we used is based on the regu-

larisation for the empirical spectral density given by Eq. (3.10), which requires to invert

the Hermitisation block matrix H−1
η defined in Eq. (3.8). For general matrices, the in-

version algorithm consists in applying recursively the Schur formula in Eq. (3.11). For

locally treelike graphs, the inversion algorithm can be closed and it leads to a set of closed

equations, i.e., the cavity equations in the Eqs. (3.49) and (3.52). In order to close the

recursive the equations, we used the Eqs. (3.47) and Eq. (3.51), which are exact on finite

trees. On locally treelike graphs, these assumptions are approximations that become

exact in the limit N →∞ to determine ultimately self-averaging quantities, such as the

spectral distribution and its support S.

Finally, we presented how the boundary of the support S for locally tree like matrices

can be determined from the cavity equations Eqs. (3.49) and (3.52). This method is based

on a linear stability analysis of the trivial solution, which is a class of solution, defined in

Eqs. (3.57)-(3.59) of the cavity equations. The properties of the trivial solution is that

it is defined outside S and that it is stable from a diagonal perturbation only outside S.

The linear stability analysis of the trivial solution leads to a set of linear self-consistent

equations for the perturbation parameters: the region of the complex plane where such

a perturbation converges to zero defines the complementary set of the support of the

spectral distribution.



Chapter 4

Theory for the spectra of sparse random

matrices with pairwise correlated interactions

In this chapter we apply the theoretical framework developed in Ch. 3, based on the

cavity method for locally treelike and non-Hermitian random matrices, to the general

model defined in Ch. 2, i.e., sparse random matrices with pairwise correlated interactions.

We remind that since the general model is defined on random graphs with a prescribed

degree distributions (see Sec. 1.4), it is a locally treelike ensemble. We assume from this

chapter on that the weights Jij to be real, and the diagonal terms to be zero, i.e., Jjj = 0.

We observe that we considered interactions to be balanced on average — see Eqs. (2.9)

and (2.21) — hence the associated spectra do not contain (deterministic) outliers [Neri

and Metz, 2016].

In Secs. 4.1-4.3 we apply the equations for the spectral distribution and the boundary

of its support to the general, which leads to distributional recursive equations. In order to

check the validity of the equations that we derived, in Sec. 4.4 we apply them to limiting

cases already known in literature, i.e., the oriented and dense ensembles. Sections 4.5-

4.6 present the numerical algorithms that we use to solve the equations of the theory

in Secs. 4.1-4.3 for the spectral distribution and for its support, respectively. Finally, in

Sec. 4.7, we derive an adaption of the elliptic law for sparse systems, which we use as

comparison when presenting the numerical results of the spectra in Ch. 5.

4.1 Spectral distribution

Here we use the cavity method for locally treelike and non-Hermitian random matrices,

to derive a set of equations for the spectral distribution of the general model. We start

by considering the cavity Eqs. (3.49) and (3.52).

Since we are interested in exploring the properties of the spectra of sparse matrices

in the limit N → ∞, we map here the cavity equations (3.49) and (3.52) into recursive

distributional cavity equations [Kabashima et al., 2010; Metz et al., 2019]. The advantage

of this approach is that it allows to sample directly the N →∞ limit of the sparse non-
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Hermitian ensemble under study, as we explain now. The strategy is to map of the

cavity equations (3.49) and (3.52) into distributional equations in terms of distributions

of the random variables Gj and G
(`)
j in the infinite size limit. The idea behind this

mapping is that the neighbourhoods of any couple of distinct nodes in the infinite graph

are statistically equivalent, which is the case for random graphs with prescribed degree

distributions. Accordingly, the concepts of nodes j, l and of their neighbourhoods are

lost, together with the concept of cavity graph. Since the random variables in the right

hand side of (3.49) are independent, as well as the random variables in the right hand side

of (3.52), one has that the Gj and G
(`)
j are generally described by different distributions.

Accordingly, we can define the following two distributions

q̃(g) := lim
N→∞

1

N

N∑
j=1

δ(g − Gj), (4.1)

and

q(g) := lim
N→∞

1

cN

N∑
j=1

∑
`∈∂j

δ(g − G
(`)
j ). (4.2)

In terms of these two distributions the cavity equations (3.49) and (3.52) can be written

as the following implicit distributional equations12

g̃
d
=

(
zη −

K∑
`=1

J`g`J
T
`

)−1

, (4.3)

g
d
=

(
zη −

K′−1∑
`=1

J`g`J
T
`

)−1

, (4.4)

where
d
= denotes equality in the distributions, i.e. they represent self-consistent equa-

tions for the distributions q̃ and q of the random variables g̃ and g in Eq. (4.1)-(4.2),

respectively, and where the J-s are defined as follows

∀j, k = 1, . . . , N with j 6= k : Jjk → J` :=

(
0 u`

l` 0

)
, with (u`, l`) ∼ p(u`, l`), (4.5)

where p is a joint distribution for the i.i.d. pairs of weights, such as the ones introduced

in Ch. 2. Within this distributional approach, the integer numbers K,K ′ are drawn

from two different, but related degree distributions, as we explain now. Indeed, while K

is drawn from the degree distribution obtained by randomly picking up a vertex in the

graph, which is the prescribed degree distribution pdeg, K ′ is drawn from the branching

degree distribution qdeg, i.e. the degree distribution obtained by randomly picking up an

1we used here a short notation for g̃ to remind that g̃ ∼ q̃(g) while g ∼ q(g). However, when the
distribution q̃ is specified, as in the rest of the chapter, the tilde on g̃ is not necessary

2we use the transpose symbol JT` since we consider only real values to model interactions. In the

general theory for non-Hermitian matrices one would have J†` instead
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edge in the graph, and then asking what is the degree of one of its end vertices. As it is

shown below qdeg and pdeg are related trough the simple equation

∀k ∈ N : qdeg(k) =
kpdeg(k)

〈k〉pdeg
. (4.6)

The Eqs. (4.3) and (4.4) are implicit distributional equations, where the probability

distributions from which the random variables are drawn do not appear yet. With the

considerations made above, the distributional cavity equations Eqs. (4.3) and (4.4), in

terms of the distributions q̃ and q in Eqs. (4.1) and (4.2), become explicit into

q̃(g) =
∞∑
k=0

pdeg(k)

∫ k∏
`=1

dg`q(g`)

∫ k∏
`=1

p(u`, l`)du`dl` δ

g −

(
zη −

k∑
`=1

J`g`J
T
`

)−1
 ,

(4.7)

and

q(g) =
∞∑
k=1

kpdeg(k)

c

∫ k−1∏
`=1

dg`q(g`)

∫ k−1∏
`=1

p(u`, l`)du`dl` δ

g −

(
zη −

k−1∑
`=1

J`g`J
T
`

)−1
 ,

(4.8)

where 〈k〉pdeg = c is the mean degree, zη is defined in Eq. (3.25), and J` is defined in

Eq. (4.5). In Eq. (4.8) and Eq. (4.8), and in the rest of the chapter, we use the simple

notation dg` for the Lebesgue measure in the space C2×2 of two-by-two complex matri-

ces. The distributional cavity equations Eqs. (4.7) and (4.8) are recursive distributional

equations that can be solved numerically via the population dynamics algorithm, as dis-

cussed in Sec. 4.5. The solutions then can be used to evaluate the spectral distribution

in Eq. (3.53), which reads

ρ(z) = lim
η→0

1

π
∂z̄

∫
dg q̃(g) [g]21. (4.9)
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The branching degree distribution

In this paragraph we derive Eq. (4.6).

We consider an undirected simple graph G of size N , described by the adjacency

matrix C with prescribed degree distribution pdeg(k|N). We define the joint dis-

tribution of degrees of connected node pairs in G as

∀k, k′ ∈ N : W (k, k′|N) =

∑N
i=1

∑N
j=1,(j 6=i) δk,ki(C)δk′,kj(C)Cij∑N
i=1

∑N
j=1,(j 6=i) Cij

. (4.10)

The joint distribution in Eq. (4.10) represents the fraction of links in G that connect

a node of degree k to another distinct node of degree k′. Accordingly, its marginal

with respect to k′ gives the fraction of links between two nodes where one of the

two nodes has degree k, which coincides with the definition of qdeg in the main

text. In other words, qdeg can be obtained as

qdeg(k|N) =
∞∑
k′=0

W (k, k′|N)

=
∞∑
k′=0

∑N
i=1

∑N
j=1,(j 6=i) δk,kiδk′,kjCij∑N

i=1

∑N
j=1,(j 6=i) Cij

=

∑N
i=1 δk,kiki
N 〈k〉pdeg

=
k
∑N

i=1 δk,ki
N 〈k〉pdeg

=
kpdeg(k|N)

〈k〉pdeg
, (4.11)

which leads to Eq. (4.6) in the limit N →∞.

4.2 Alternative formula for the spectral distribution

Here we derive an alternative theoretical formula for the spectral distribution ρ, which

turns out to be more applicable, at the numerical implementation level, than Eq. (4.9).

Indeed, in principle ρ can be determined from Eq. (4.9) by taking the numerical derivative

∂z̄. However, it is possible to circumvent this step by considering a joint distribution for G

and its derivative ∂z̄G of the cavity equations (3.49) and (3.52) [Metz et al., 2019; Rogers

and Pérez Castillo, 2009]. We apply now this approach to find an alternative expression

for the spectral distribution in Eq. (4.9), and then, in Sec. 5.1.2 and Sec. 5.2.2, we present

numerical results for the spectral distribution of sparse random matrices with pairwise

correlated interactions. We want to calculate the derivative ∂z̄ of the cavity equations
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(3.49) and (3.52); the right hand sides of these two equations are inverse of matrices,

which, due to commutation rules, reads

∂z̄(K
−1) = −K−1(∂z̄K)K−1, (4.12)

By using it, we can now compute the derivative ∂z̄ of the cavity equations (3.49) and

(3.52), which read

∂z̄Gj = −Gj

σ− −∑
k∈∂j

Jjk
(
∂z̄G

(j)
k

)
Jkj

Gj, (4.13)

and

∂z̄G
(`)
j = −G

(`)
j

σ− − ∑
k∈∂j\{l}

Jjk
(
∂z̄G

(j)
k

)
Jkj

G
(`)
j , (4.14)

where

σ− = ∂z̄zη =

(
0 0

1 0

)
. (4.15)

By following the same approach that we used in Sec. 4.1 to derive the distributional

version of the cavity equations (3.49) and (3.52), we can write now the distributional

equations for the following distributions

q̃(g, g′) := lim
N→∞

1

N

N∑
j=1

δ(g − Gj)δ(g′ − ∂z̄Gj), (4.16)

and

q(g, g′) := lim
N→∞

1

cN

N∑
j=1

∑
`∈∂j

δ(g − G
(`)
j )δ(g′ − ∂z̄G(`)

j ), (4.17)

which read

q̃(g, g′) =
∞∑
k=0

pdeg(k)

∫ k∏
`=1

dg`dg′`q(g`, g
′
`)

∫ k∏
`=1

du`dl` p(u`, l`)

× δ

g −

(
zη −

k∑
`=1

J`g`J
T
`

)−1
 δ [g′ + g

(
σ− −

k∑
`=1

J`g
′
`J

T
`

)
g

]
, (4.18)

and

q(g, g′) =
∞∑
k=1

kpdeg(k)

c

∫ k−1∏
`=1

dg`dg′` q(g`, g
′
`)

∫ k−1∏
`=1

du`dl` p(u`, l`)

× δ

g −

(
zη −

k−1∑
`=1

J`g`J
T
`

)−1
 δ [g′ + g

(
σ− −

k−1∑
`=1

J`g
′
`J

T
`

)
g

]
. (4.19)
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We refer to the Eqs. (4.18) and (4.19) as the “distributional cavity equations that include

the derivatives”. By using the Eqs. (4.18) and (4.19) the spectral density can be evaluated

as follows

ρ(z) = lim
η→0

1

π

∫
dgdg′ q̃(g, g′)[g′]21, (4.20)

where, differently from Eq. (4.9), the derivative is includes implicitly in g′. Finally, by

inserting Eq. (4.18) into Eq. (4.20) the spectral distribution can be expressed in terms

of the distribution q as follows

ρ(z) = lim
η→0+

1

π

∫
dgdg′ q̃(g, g′)[g′]21

= lim
η→0+

1

π

∞∑
k=0

∫
pdeg(k)

k∏
`=1

dg`dg′` q(g`, g
′
`)

∫ k∏
l=1

du`dl`p(u`, l`)

×
∫

dgdg′δ

g −

(
zη −

k∑
`=1

J`g`J
T
`

)−1
 δ [g′ + g

(
σ− −

k∑
`=1

J`g
′
`J

T
`

)
g

]
[g′]21

= lim
η→0+

1

π

∞∑
k=0

∫
pdeg(k)

k∏
`=1

dg`dg′` q(g`, g
′
`)

∫ k∏
l=1

du`dl`p(u`, l`)

×

−(zη −
k∑
`=1

J`g`J
T
`

)−1(
σ− −

k∑
`=1

J`g
′
`J

T
`

)(
zη −

k∑
`=1

J`g`J
T
`

)−1


21

, (4.21)

where we integrated over the variables g, g′. The spectral distribution ρ can be evaluated

via a Monte-Carlo numerical integration procedure, once the distribution q has reached

a stable solution via the population dynamics algorithm (see Sec. 4.5). The Eq. (4.21)

is a key result of this thesis, which provides the spectral distribution of sparse random

matrices with pairwise correlated interactions and on locally treelike graphs, and which

is not available in this form in the existing literature.

4.3 Boundary of the support of the spectral distribution

In Sec. 3.6 we showed how to evaluate the boundary of the support, in the complex plane,

of the spectral distribution of locally treelike and non-Hermitian random matrices. The

key equations that we derived for this purpose are Eqs. (3.69),(3.70) and Eq. (3.71).

Here we apply them to the general model and we derive their distributional counterpart,

similarly to Sec. 4.1.

In light of the linear stability analysis performed in Sec. 3.6, and similarly to Sec. 4.1,

we introduce the following distribution

Q(g, h, h′) := lim
N→∞

1

cN

N∑
j=1

∑
`∈∂j

δ(g − g(`)
j )δ(h− ε(`)j )δ(h′ − δ(`)

j ), (4.22)
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in terms of which the Eqs. (3.69),(3.70) and Eq. (3.71) can be mapped to the following

distributional self-consistent equation, to the leading order in the perturbation, i.e.,

Q(g, h, h′) =
∞∑
k=1

k pdeg(k)

c

∫ k−1∏
`=1

dg`dh`dh
′
` Q(g`, h`, h

′
`)

∫ k−1∏
`=1

du`dl` p(u`, l`)

× δ

g +

(
z +

k−1∑
`=1

u`g`l`

)−1
 δ

(
h− |g|2

k−1∑
`=1

h`u
2
`

)
δ

(
h′ − |g|2

k−1∑
`=1

h′`l
2
`

)
, (4.23)

where we used the compact notation dg, and equivalently dhdh′ to denote the (bi-

dimensional) Lebesgue measure in C. We observe that in Eq. (4.23), the recursions for

h and h′ are decoupled. Hence, since p(u`, l`) = p(l`, u`) is assumed to be symmetric,

we can marginalise Q with respect to anyone of h or h′, so that the information on the

stability is preserved but with one variable less3. Accordingly, we have that the marginal

self-consistent distributional equation reads

Q(g, h) =

∫
dh′ Q(g, h, h′)

=
∞∑
k=1

kpdeg(k)

c

∫ k−1∏
`=1

dg`dh`Q(g`, h`)

∫ k−1∏
`=1

p(u`, l`)du`dl`

× δ

(
h− |g|2

k−1∑
`=1

h`l
2
`

)
δ

g +

(
z +

k−1∑
`=1

u`g`l`

)−1
 . (4.24)

The self-consistent equation (4.24) for the distribution Q(g, h) is the key equation that

governs the boundary of the support S of the spectral distribution. Together with the

Eq. (4.21), Eq. (4.24) is a key result of this thesis, which provides the boundary of the

support the spectral distribution of sparse random matrices with pairwise correlated

interactions and on locally treelike graphs, and which is not available in this form in the

existing literature. Indeed, as discussed in Sec. 3.6, the property that a perturbation of

the trivial solution is stable only outside S, is mapped into the criterion that for z /∈ S
the solution of Eq. (4.24) converges to a stable solution that is the trivial solution in the

distributional approach, which factorises as follows

Q(g, h) = q(0)(g)δ(h), (4.25)

q(0)(g) =
∞∑
k=1

kpdeg(k)

c

∫ k−1∏
`=1

dg`q
(0)(g`)

∫ k−1∏
`=1

p(u`, l`)du`dl`

× δ

g +

(
z +

k−1∑
`=1

u`g`l`

)−1
 , (4.26)

3Otherwise, if p were not symmetric, one should marginalise with respect to each of the variables
h, h′, which would give rise to two independent distributional equations that need to be studied sepa-
rately
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while the solution Eqs. (4.25),(4.26) is unstable for z ∈ S. The distributional trivial solu-

tion q(0) corresponds to the trivial solution that we introduced in Sec. 3.6.1, and for which

the spectral distribution is zero outside the support. Accordingly, the edge of stability of

the perturbation in Eq. (4.24) at the trivial solution in Eq. (4.25) defines the boundary

of S. We note that the same equation Eq. (4.24) with the criterion Eqs. (4.25),(4.26)

can be obtained [Mambuca et al., 2020] equivalently by a linear stability analysis applied

directly to the distributional equation of the trivial solution of the cavity equations. In

Sec. 4.4, we apply Eq. (4.24) to obtain the boundary in limiting cases which have been

already studied in literature, i.e., oriented matrices and dense matrices. In both cases

the theory above has successfully provided the analytical equations for the boundary of

these benchmark ensembles.

4.4 Limiting cases

In the previous section we derived an exact formula for the boundary of the support S
of the spectral distribution ρ of random matrices in the general model. In particular,

we have shown that the boundary of S is given by the edge of stability of Eq. (4.24) at

the distributional trivial solution given by Eq. (4.25). Here we show that the boundary

of S obtained from the stability analysis of Eq. (4.24) corresponds with results obtained

previously in the literature for the limiting cases of oriented sparse random matrices (see

Ref. [Neri and Metz, 2020] and Ch. 2), for which JijJji = 0, and of dense matrices (see

Refs. [Götze et al., 2015; Sommers et al., 1988] and Ch. 1), for which c→∞.

4.4.1 Oriented ensemble

In the oriented ensemble, p(u, d) is of the form given by Eq. (2.5), such that, JijJji = 0

for each pair of indices i and j. We show in this section that for oriented matrices the

boundary of the continuous part of the spectrum is given by values of z ∈ C for which

|z|2 =
〈k(k − 1)〉pdeg

2c

〈
l2
〉
p̃
, (4.27)

where p̃ is the distribution that appears on the right-hand side of Eq. (2.5). First, we show

that Eq. (4.27) determines the edge of stability of Eqs. (4.24) at the solution (4.25), and

second we show the correspondence with the results for the boundary of S in Ref. [Neri

and Metz, 2020].
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4.4.1.1 Derivation of the boundary of the support from the distributional approach

In the oriented ensemble, the denominators in the delta distributions of Eq. (4.24) sim-

plify since u`l` = 0. As a consequence, Eq. (4.24) reads

Q(g, h) = δ

(
g +

1

z

)
R(h), (4.28)

where R solves

R(h) =
∞∑
k=1

kpdeg(k)

c

∫ k−1∏
`=1

dh`R(h`)

∫ k−1∏
`=1

du`dl` p
O(u`, l`) δ

(
h−

∑k−1
`=1 h`l

2
`

|z|2

)
, (4.29)

where pO is the distribution defined in Eq. (2.5). Eq. (4.28) implies that for oriented

matrices the variables g and h decouple. Hence, it suffices to study the stability of

Eq. (4.29) at the trivial solution R0(h) = δ(h).

Evaluating the average value of h, we readily obtain

〈h〉Q =

∫
dgdh h Q(g, h) =

∫
dgdh h δ

(
g +

1

z

)
R(h)

=

∫
dhR(h)h = 〈h〉R =

〈k(k − 1)〉pdeg
2c

〈
l2
〉
p̃

〈h〉R
|z|2

, (4.30)

where p̃ is the distribution appearing on the right-hand-side of Eq. (2.5). Hence, the

edge of stability is given by the values of z for which Eq. (4.27) holds, which is what we

were meant to show.

4.4.1.2 Derivation of the boundary of the support from the theory in Ref. [Neri and Metz,

2020]

We derive the result Eq. (4.27) from the results obtained in Ref. [Neri and Metz, 2020].

There, the random matrices A are of the form

A = J̃ ◦ C̃, (4.31)

where C̃ is the adjacency matrix of a random, directed graph with a prescribed joint

degree distribution pd
deg(kin, kout) of indegrees kin and outdegrees kout, and where J̃ is a

random matrix with real-valued i.i.d. entries drawn from a distribution p̃(x).

According to Ref. [Neri and Metz, 2020], in the limit N → ∞ the boundary of the

continuous part of the spectrum of A is given by the values z ∈ C for which

|z|2 = c̃(ρ+ 1)〈x2〉p̃, (4.32)



4.4. Limiting cases 70

where c̃ is the mean indegree (or outdegree)

c̃ = 〈kin〉pddeg = 〈kout〉pddeg , (4.33)

where we denoted the expectation over the degree distribution pd
deg(kin, kout) as 〈〉pddeg ,

with kin, kout ∈ N, and where ρ is the degree correlation coefficient

ρ =
〈kinkout〉pddeg − c̃

2

c̃2
. (4.34)

Note that Eq. (4.31) considers a random, directed graph C̃ with symmetric couplings

J̃, while Eq. (1.42) with p = pO considers a random, undirected graph C with asymmetric

couplings J. Both models are related through the correspondence

pd
deg(kin, kout) =

∞∑
k=0

pdeg(k)
1

2k

k∑
n=0

(
k

n

)
δkin,nδkout,k−n (4.35)

between the degree distributions pd
deg, pdeg of the directed and undirected graphs, respec-

tively.

We now show that Eq. (4.27) is consistent with Eq. (4.32). From Eq. (4.35) we can

express the correlation 〈kinkout〉pddeg as follows

〈kinkout〉pddeg = c̃2 (ρ+ 1) =
∞∑

kin=0

∞∑
kout=0

kinkout

∞∑
k=0

pdeg(k)
1

2k

k∑
n=0

(
k

n

)
δkin,nδkout,k−n

=
∞∑
k=0

pdeg(k)
1

2k

k∑
n=0

(
k

n

)
n(k − n)

=

〈
1

2k

k∑
n=0

(
k

n

)
n(k − n)

〉
pdeg

. (4.36)

In order to evaluate Eq. (4.36) we introduce the moment generating function

g(x) :=
k∑

n=0

(
k

n

)
enx = (1 + ex)k, (4.37)

with derivatives

g′(x) :=
d

dx
g(x) =

k∑
n=0

(
k

n

)
enx n = k(1 + ex)k−1ex, (4.38)

g′′(x) :=
d2

dx2
g(x) =

k∑
n=0

(
k

n

)
enx n2 = k(1 + ex)k−2ex(kex + 1), (4.39)
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so that in terms of g(x) and its derivatives we have

c̃2 (ρ+ 1) =

〈
pdeg(k)

k

2k
g′(x = 0)

〉
pdeg

−
〈

1

2k
g′′(x = 0)

〉
pdeg

=

〈
k2

2

〉
pdeg

−
〈
k(k + 1)

22

〉
pdeg

=

〈
k2 − k

22

〉
pdeg

=
1

4
〈k(k − 1)〉pdeg . (4.40)

Similarly to Eq. (4.40), one has also that

c̃ =

〈
g′(x = 0)

2k

〉
pdeg

=
c

2
. (4.41)

By using Eqs. (4.40)-(4.41), we have that Eq. (4.32) recovers Eq. (6.6) for the bound-

ary of an oriented ensemble, i.e.

|z|2

〈x2〉p̃
= c̃ (ρ+ 1) =

〈k(k − 1)〉pdeg
4c̃

=
〈k(k − 1)〉pdeg

2c
, (4.42)

which confirms the consistency with Ref. [Neri and Metz, 2020].

4.4.2 Large connectivity limit

We take the limit c→∞, with c/N ∼∞ 0, where ∼∞ means the asymptotic equivalence

in the limit c → ∞ and N → ∞, where the latter is implicit in the distributional

approach, and we find the elliptic law given by

ρ(z) =


σ2

π(σ4 − τ 2)
if z ∈ S,

0 if z /∈ S,
(4.43)

with

τ := c 〈ul〉p , and σ2 := c
〈
u2
〉
p
, (4.44)

where p is the distribution of u and l in the general model, and where we rescaled here

u, l by 1/
√
c so that σ and τ in Eq. (4.44) remain finite in the limit c→∞. The support

is given by

S :=

{
z ∈ C :

<(z)2

(σ2 + τ)2 +
=(z)2

(σ2 − τ)2 ≤
1

σ2

}
, (4.45)

which is consistent with the elliptic law Eq. (4.43), in the sense that the integral (with

the Lebesgue measure in C) of ρ over the support S is one.

The elliptic law in Eq. (4.43)-(4.45) — with σ and τ as in Eq. (4.44) —, is equivalent

to the elliptic law for i.i.d. matrices in Eq. (1.22) and Eq. (1.23) with rescaled variance
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and correlation.

4.4.2.1 Support

We first derive now an expression for the support S. We show that the edge of stability

of the Eq. (4.24) at the trivial solution Eq. (4.25) provides us with the boundary of the

elliptic law in Eqs. (4.43). Using the law of large numbers, we can identify the sums

inside the delta distributions on the right-hand-side of Eq. (4.24) with their mean values,

i.e., for c→∞

k−1∑
`=1

u`g`d` ∼∞ τ ĝ, (4.46)

k−1∑
`=1

h`l
2
` ∼∞ σ2ε̂. (4.47)

As a consequence, to the leading order 1/c, the distribution Q takes the form

Q(g, h) = δ

(
g +

1

z + τ ĝ

)
δ
(
h− σ2|ĝ|2ĥ

)
. (4.48)

By evaluating ensemble averages 〈g〉Q, 〈h〉Q, with Q as in Eq. (4.48) which equal the

mean values ĝ and ĥ, respectively, one finds the self-consistent equations

ĝ = − 1

z + τ ĝ
, (4.49)

and

ĥ = σ2ĥ|ĝ|2. (4.50)

The edge of stability of the previous equation is given by ĝ = ĝ(z) such that

|ĝ|2 =
1

σ2
. (4.51)

From Eq. (4.49) we have the following identity

|ĝ|2 = ĝ¯̂g =
1

(z + τ ĝ)(z̄ + τ ¯̂g)
, (4.52)

and from Eq. (4.51) it follows that

(z + τ ĝ)(z̄ + τ ¯̂g) = σ2; (4.53)

we have also that

ĝ + ¯̂g = − 1

z + τ ĝ
− 1

z̄ + τ ¯̂g
= − z̄ + τ ¯̂g + z + τ ĝ

σ2
= −(ĝ + ¯̂g)

τ

σ2
− z + z̄

σ2
, (4.54)
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and multiplying by σ2 and factorising on the left hand side ĝ + ¯̂g we have

ĝ + ¯̂g = − z + z̄

σ2 + τ
, (4.55)

which can be expressed in terms of the real parts as

<(ĝ) = − <(z)

σ2 + τ
. (4.56)

Similarly one can get an equation for the difference

ĝ − ¯̂g = − 1

z + τ ĝ
+

1

z̄ + τ ¯̂g
=
−z̄ − τ ¯̂g + z + τ ĝ

σ2
= (ĝ − ¯̂g)

τ

σ2
+
z − z̄
σ2

, (4.57)

and multiplying by σ2 and factorising on the left hand side ĝ − ¯̂g we have

ĝ − ¯̂g =
z − z̄
σ2 − τ

, (4.58)

which can be expressed in terms of the imaginary parts as

=(ĝ) =
=(z)

σ2 − τ
. (4.59)

Finally, since from Eqs. (4.52),(4.53) we have that

(<(ĝ))2 + (=(ĝ))2 =
1

σ2
, (4.60)

plugging (4.56) and (4.59) we have the equation for the boundary of the support in the

large connectivity limit as (
<(z)

σ2 + τ

)2

+

(
=(z)

σ2 − τ

)2

=
1

σ2
, (4.61)

which is equivalent to Eq. (4.45).

4.4.2.2 Spectral distribution

We compute the spectral distribution in the large connectivity limit. In this case, we rely

on the Eqs. (4.7-4.9). Similarly to the previous derivation of the boundary in Sec. 4.4.2.1,

in the limit c→∞, we can apply the law of large numbers inside the Dirac distributions

of Eqs. (4.7-4.8), leading to

q̃(g) = q(g) = δ

g −

(
−σ2ĝ22 z − τ ĝ21

z̄ − τ ĝ12 −σ2ĝ11

)−1
 , (4.62)
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where we set η = 0, and we explicitly express the elements of the matrix products,

replacing them with their mean values, similarly to Eqs. (4.46)-(4.47). As in Sec. 4.4.2.1,

by evaluating ensemble averages 〈g〉q, with q as in Eq. (4.62) which equals the mean

value ĝ, one finds the self-consistent equation where ĝ solves the self-consistent equation

ĝ =

(
ĝ11 ĝ12

ĝ21 ĝ22

)
=

(
−σ2ĝ22 z − τ ĝ21

z̄ − τ ĝ12 −σ2ĝ11

)−1

=
1

ĝ11ĝ22σ4 − (z̄ − τ ĝ12)(z − τ ĝ21)

(
−σ2ĝ11 −z + τ ĝ21

−z̄ + τ ĝ12 −σ2ĝ22

)
,

(4.63)

and the spectral distribution is given by

ρ(z) =
1

π
∂z̄ ĝ21. (4.64)

Equation (4.63) implies that

ĝ11ĝ22 =
ĝ11ĝ22σ

4

[ĝ11ĝ22σ4 − (z̄ − τ ĝ12)(z − τ ĝ21)]2
, (4.65)

such that either

ĝ11 = ĝ22 = 0, (4.66)

or [
ĝ11ĝ22σ

4 − (z̄ − τ ĝ12)(z − τ ĝ21)
]2

= σ4. (4.67)

Equation (4.66) is the trivial solution and Eq. (4.67) is the nontrivial solution.

In Sec. 4.4.2.1, we have shown that the trivial solution Eq. (4.72) is stable for all z

for which (
<(z)

σ2 + τ

)2

+

(
=(z)

σ2 − τ

)2

>
1

σ2
, (4.68)

while the nontrivial solution holds for(
<(z)

σ2 + τ

)2

+

(
=(z)

σ2 − τ

)2

≤ 1

σ2
. (4.69)

In what follows, we first compute the spectral distribution for the trivial solution and

then we compute it for the nontrivial solution.

Trivial solution. For the trivial solution, Eq. (4.63) reduces to the two equations

ĝ21 =
1

z − τ ĝ21

, (4.70)

ĝ12 =
1

z̄ − τ ĝ12

, (4.71)
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which admit two complex solutions

ĝ21 =
z ±
√
z2 − 4τ

2τ
. (4.72)

For |z| > 2
√
|τ |, this is an analytical function in z, and therefore

∂z̄ ĝ21 = 0. (4.73)

Since for all z for which Eq. (4.68) holds, it also holds that |z| > 2
√
|τ |, we obtain that

ρ(z) = 0 if

(
<(z)

σ2 + τ

)2

+

(
=(z)

σ2 − τ

)2

>
1

σ2
. (4.74)

Nontrivial solution. For the nontrivial solution Eq. (4.67) we obtain

ĝ =

(
ĝ11 ĝ12

ĝ21 ĝ22

)
= ± 1

σ2

(
−σ2ĝ11 −z + τ ĝ21

−z̄ + τ ĝ12 −σ2ĝ22

)
, (4.75)

and therefore

±σ2ĝ21 = −z̄ + τ ĝ12, (4.76)

±σ2ĝ12 = −z + τ ĝ21. (4.77)

From these equations we obtain a closed equation for ĝ21, i.e.,

ĝ21 = ∓ σ2

σ4 − τ 2
z̄ − τ

σ4 − τ 2
z, (4.78)

and accordingly

ρ(z) =
1

π
∂z̄ ĝ21 =

1

π

σ2

σ4 − τ 2
, (4.79)

if we select the positive solution.

4.5 Computing the spectral distribution: the population

dynamics algorithm

Here we detail the numerical algorithm that can be used to obtain the spectral distribu-

tion ρ from the theoretical derivation in Sec. 4.2. We implement this method to determine

ρ for the antagonistic matrices, and present the results in Ch. 5. We first present the

population dynamics algorithm, which is a numerical method to solve self consistently

equations of the form Eq. (4.19), and from its stable solution ρ can be estimated via a

Mont-Carlo integration, as discussed at the end of this section.
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Recursive distributional equations of the form Eq. (4.19) have been previously found,

in the literature, in different contexts. For example, to study spin glasses on a Bethe

lattice [Mézard and Parisi, 2001], where q(g, g′) (there named Q(h)) represents the prob-

ability density of local fields hi on each spin sites i, and in the theory of localisation of

electrons [Abou-Chacra et al., 1973]. In the context of symmetric sparse random matri-

ces, recursive distributional equations have been derived through an approach based on

replicas [Kühn, 2008], and on the cavity method [Metz et al., 2010]. Similar recursive

equations have been found within the study of message-passing problems (or belief prop-

agation) [Chertkov et al., 2010; Krzakala et al., 2015]. In all these separated problems,

these equations are essentially described by ensemble averages: an average over the dis-

order of the interactions (in Eq. (4.19) it is given by p(u, l)), an average over the degree

distribution (pdeg(k)) and the average over the distribution (q).

The numerical algorithm introduced to solve these self consistent equations, which

analytically would be hardly solvable, is called population dynamics: the probability

distribution to be determined is parametrised by a large number Np of variables which

arrange in a population; its dynamics is given by the update rule according to the

argument of the delta in the self-consistent equation that, accordingly, depends on the

specific case under study. This dynamics defines a Markov chain on the space of the Np

variables of the population [Mézard and Parisi, 2001]. In particular, this chain has a

stationary distribution which is reached after some transient time. In the limit Np, the

stationary distribution satisfies the self-consistent equation. As agued in Ref. [Mézard

and Parisi, 2001], it would be possible to show that the corrections to this limit are

proportional to N−1
p . The procedure for practical applications consists in fixing the

value of Np (≈ 104 − 105 for example), iterating the update rules for the dynamics

many times in such a way as to obtain the spectral distribution at fixed Np, and finally

extrapolating the results to the limit Np →∞. We explain more in detail the algorithm

below.

We represent the distributions q(g, g′) with a population of pairs (g(j), g′(j)) of two-

by-two matrices g(j) and g′(j) with complex entries.

The population is initialised and updated as follows:

1. Initialise the population by drawing Np independent realisations of random vari-

ables (g(i), g′(i)) from a certain distribution pinit(g, g′);

2. Generate a degree k from the distribution k
c
pdeg(k);

3. Uniformly and randomly select k−1 elements (g`, g
′
`) from the population and draw

k−1 random variables (u`, l`) from the distribution p(u`, l`), with ` = 1, 2, . . . , k−1;

4. Compute

g =

(
zη −

k−1∑
`=1

J`g`J
T
`

)−1

, and g′ = −g

(
σ− −

k−1∑
`=1

J`g
′
`J

T
`

)
g; (4.80)
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5. Uniformly and randomly select an index i ∈ {1, . . . , Np} and replace (g(i), g′(i)) by

(g, g′).

In this case, the precise form of the distribution pinit does not matter. The steps (2-5)

are repeated a number Neq of times until the estimated distribution

q̂(g, g′) =
1

Np

Np∑
j=1

δ(g − g(j))δ(g′ − g′(j)) (4.81)

has converged to its stationary value.

After the distribution q̂(g, g′) has converged, we compute a first estimate ρ̂1 of ρ from

Eqs. (4.21) and (4.19) with a Monte-Carlo integration algorithm. We then repeat the

steps (2-5) a number Np of times and then compute a second estimate of ρ̂2 of ρ. We

repeat this procedure a number nρ of times to obtain the final estimate

ρ̂ =
1

nρ

nρ∑
i=1

ρ̂i. (4.82)

The error on ρ̂ is computed based on the standard deviation of the set of sampled ρ̂i.

4.6 Computing the boundary of the support with the population

dynamics algorithm

Here we detail the numerical method that we used to obtain the boundary of the support

S, for which we present the results in Ch. 5 applied to the models in Ch. 2. The method

is based on a population dynamics algorithm similar to the one described in Sec. 4.5 to

solve the Eq. (4.19).

The population dynamics algorithm for the boundary represents the distribution

Q(g, h) in Eq. (4.24) with a population of Np realisations of the random variables (g, h).

The population is initialised and updated as follows:

1. Initialise the population by drawing Np independent realisations of random vari-

ables (g(i), h(i)) from a certain distribution pinit(g, h);

2. Generate a degree k from the distribution k
c
pdeg(k);

3. Uniformly and randomly select k−1 elements (g`, h`) from the population and draw

k−1 random variables (u`, l`) from the distribution p(u`, l`), with ` = 1, 2, . . . , k−1;

4. Compute

g = −

[
z +

k−1∑
`=1

u`g`l`

]−1

, and h = |g|2
k−1∑
`=1

h` |l`|2 ; (4.83)
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5. Uniformly and randomly select an index i ∈ {1, . . . , Np} and replace (g(i), h(i)) by

(g, h).

Steps (2-5) are repeated for a certain number Ns = nsNp of iterations, where ns is the

number of sweeps for which the whole population is updated. After ns sweeps, the

steps (2-5) are repeated for another number Nr = nrNp of iterations after which the

distribution Q(g, h) is estimated as

Q̂(g, h) =
1

nrNp

nrNp∑
j=1

δ(g − g(j))δ(h− h(j)). (4.84)

If Np → ∞, then the pairs (g(j), h(j)) in the population are independent realisations

drawn from the distribution Q(g, h) and the algorithm is exact.

Since the Eq. (4.24) follows from a stability analysis, it holds that if the initial

population is of the form given by Eq. (4.25), then

lim
ns→∞

lim
Np→∞

〈|h|〉Q̂ =

{
0, z /∈ S,
∞, z ∈ S.

(4.85)

Hence, we obtain the boundary of S by determining the value of z that separates the

region where 〈|h|〉Q̂ diverges from the region where 〈|h|〉Q̂ converges to zero.

4.7 Adaptation of the elliptic law for sparse matrices

Here we derive an adaptation of the elliptic law in Eq. (1.22) and Eq. (1.23) to sparse

matrices, equivalently, for example, to what has been done in [Allesina and Tang, 2012],

as discussed in Ch. 1.

As discussed in Sec. 1.3 and Sec. 1.6, the elliptic law has been applied to random

matrices of finite but large size N , where a couple of opposite entries (Aij, Aji) is non-zero

with probability C. At the level of the elliptic domain, this case amounts to a rescaling

of the semiaxes ax,y of the elliptic support, as in Eq. (1.45). Such elliptic law, which

is derived to describe the boundary of the spectra of dense matrices is, by definition,

independent of the network topology. Here we want to make evidence of the progress

that our study gives to the current literature, and to highlight the importance of the

influence of network topology on the spectral properties of sparse random matrices with

pairwise correlated interactions. Accordingly, we further adapt the elliptic law to sparse

random matrices of the general model that we study in this thesis, as they were dense

matrices, and thus ignoring the network structure. This adaptation is simply given by

mapping the mean degree c of the sparse ensemble that we study to the connectance C

through C = c/N . Equivalently, this mapping defines an effective i.i.d. matrix ensemble

with entries (Aij, Aji) with correlation τ and variance σ2 as in Eq. (4.44), for finite c,

that satisfies the elliptic law in Eq. (4.43),(4.45). The relation between the covariance
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and the variance of the two ensemble is a simple rescaling by c: for example, in the case

of the interactions of Model A, they are σ2 = c and τ = −3c/4.

We make explicit now the semiaxes a<,=, on the real and imaginary axes, respectively,

of the elliptic boundary in S for this adaptation of the elliptic law, i.e.,

a<,= = σ(1± τ/σ2), (4.86)

which, as discussed above, correspond to the semiaxes in Eq. (1.45) where c = CN is

included in the definitions of τ, σ2 as in Eq. (4.44).

The first consequence of this adaptation is that the elliptic law has finite support

for N → ∞, differently from what happens for dense matrices with finite elements. In

other words, the elliptic law adapted to the sparse ensembles predicts that systems whose

interactions are described by sparse matrices can be stable in all cases as the leading

eigenvalue does not diverge with N .

When we present the numerical results in Chs. 5-6, we also show in the figures

the analytical curves corresponding to the adaptation of the elliptic law as derived in

Eqs. (4.43)-(4.45).

4.8 Summary of this chapter

We adopted a distributional approach to determine the central equations for the spectral

distribution and its support for the general model in Sec. 2.1.

First, we obtained the distributional cavity equation that include the derivatives in

Eq. (4.19), from which the spectral distribution is given by Eq. (4.21).

Second, we obtained the self-consistent equation (4.24), that outside the support S
converges to the distributional trivial solution in Eq. (4.26), and hence it establishes a

criterion to determine the boundary of S.



Chapter 5

Results for the spectra of sparse random

matrices with pairwise correlated interactions

This chapter presents results for the spectra of antagonistic and mixture random matri-

ces. In particular, we focus here on the spectral distribution ρ and its support S. In

order to corroborate the theory developed in Ch. 4, we compare the results obtained

from direct diagonalization of matrices of finite sizes N with the theoretical predictions

for infinitely large matrices. The numerical methods, that have been implemented to

obtain the boundary of the support and the spectral distribution, are based on the pop-

ulation dynamics algorithm, as discussed in Sec. 4.5 and in Sec. 4.6. In order to evidence

the role of the network structure, we also discuss the differences between the spectra of

sparse matrices and those of effective dense matrices defined through the adaption of the

elliptic law in Eqs. (4.43)-(4.45), as discussed in Sec. 4.7.

First, Sec. 5.1 considers sparse antagonistic matrices on random regular graphs , for

which the degree distribution has bounded support. Then, Sec. 5.2 presents the spectra

of matrices in Model A defined in Sec. 2.2, in order to consider the effects of an unbounded

degree distribution and of degree fluctuations on the spectra of antagonistic matrices.

Finally, Sec. 5.3 shows the spectra of matrices in Model B defined in Sec. 2.2, since we

want to understand the differences between the antagonistic and mixture ensembles at

the level of their spectra.

5.1 Antagonistic matrices on random regular graphs

We consider here the spectra of antagonistic matrices on random regular graphs with

the degree distribution

pdeg(k) = δk,c, (5.1)

and with the interactions of only predator-prey kind, as in Model A. In Sec. 5.1.1 we

present results for the support of the spectral distribution and then in Sec. 5.1.2 results

on the spectral distribution.
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(a) N = 10 (b) N = 102 (c) N = 103 (d) N = 104

(e) N = 10 (f) N = 102 (g) N = 103 (h) N = 104

Figure 5.1: Spectra of antagonistic random matrices on random regular graphs with degree
c = 4 (panels from (a) to (d)) and c = 3 (panels from (e) to (h)), the interactions are as in Model
A in Sec. 2.2. Gray markers are the eigenvalues of ms matrices of size N , with ms = 104/N ,
that are randomly drawn from this ensemble and are obtained through direct diagonalization
routines. Continuous black lines are theoretical results for N →∞ obtained with the theory of
Sec. 4.3. Red dashed lines shown in panels (d) and (h) represent the boundary of the elliptic
law given by Eqs. (4.43-4.45) with σ2 = c and τ = −3c/4. Note that the horizontal and vertical
scales are not fixed, for visualisation purposes.
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5.1.1 Support of the spectral distribution

Figure 5.1 shows the spectra of antagonistic matrices on graphs with degrees c = 3 and

c = 4. Each panel contains 104 eigenvalues obtained from direct diagonalization of ms =

104/N matrices, where we keep the productmsN fixed. The plots show also the boundary

of the spectra as mentioned above. There is a very good correspondence between the

boundary of theory and the spectra of eigenvalues from direct diagonalization already

at N ≈ 103, while for smaller N deviations appear, which are due to fluctuations in the

spectral properties for matrices of finite size. For example, from Fig. 5.1 it appears that

the leading eigenvalue at small values of N = 10 is larger than the leading eigenvalue at

N = 104, for fixed value of c. Indeed, there are tails of eigenvalues that extend beyond

the boundary of the support on the real axis that appear for small values of N . These

tails in the antagonistic case are probably due to cycles in the graph which are more

abundant for non-sparse realisations, as it is the case for small values of N ≈ 10, while

the tails disappear for larger N , where there is a smaller fraction of cycles. This is an

example of finite size effects, and we study in more detail the dependence on N of the

leading eigenvalue in Ch. 6.

We observe that the adaptation of the elliptic law in Eqs. (4.43)-(4.45), as discussed

in Sec. 4.7, provides a very good approximation for the leading eigenvalue of an antag-

onistic matrix with c = 3, 4 on random regular graphs. However, stronger and stronger

discrepancies appear in the boundary towards the intersection with the imaginary axis.

In Sec. 5.1.2 we look at the spectral distribution ρ, to validate our theory and to

further characterise deviations from the adaptation of the elliptic law.

5.1.2 Spectral distribution

We present results about the spectral distribution of antagonistic random matrices on

random regular graphs. We focus here on mean connectivity c = 4, the spectra of this

ensemble are shown in Fig. 5.1 (panels (a)-(d)). We select cuts parallel to the real or

imaginary axes in the complex plane, as shown in Fig. 5.2, which indicates the number

of the figure in which we show the spectral distribution. The empirical spectral density

of the eigenvalues evaluated by diagonalising 104 matrices of size 5000 is compared with

the theoretical evaluation of the spectral distribution. As discussed in Sec. 4.5, the latter

amounts to first solve Eq. (4.19) with a population dynamics algorithm, and second to

a Monte-Carlo integration of Eq. (4.21) to finally estimate the spectral distribution ρ.

The results in Fig. 5.3 show an excellent agreement between theory and numerical

experiments. The distribution displays some qualitative similarities between the three

cuts: the peak is for <(z) = 0, and there is an evident change of the slope in proximity

of the boundary, where it becomes steeper. However, some care should be taken to

interpret the results in Fig. 5.3(c). Indeed, there exists an accumulation of eigenvalues

on the real line, which is a known phenomenon in RMT where the number of real
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Figure 5.2: Eigenvalues of one matrix sampled from antagonistic random matrices on
random regular graphs with c = 4, as in Fig. 5.1, now one sample with N = 5000. The
blue lines denote the cuts along which we compute the spectral distribution ρ in Figs. 5.3
and 5.4. The red dashed line is the elliptic law given by Eqs. (4.43-4.45) with σ2 = c
and τ = −3c/4.
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(a) =(z) = 2

(b) =(z) = 0.6

(c) =(z) = 0

Figure 5.3: The spectral distribution ρ along cuts parallel to the real axis for antagonistic random
matrices on random regular graphs with c = 4. The values of =(z) are indicated in the captions and
the cuts are shown in Fig. 5.2. Theoretical results from the cavity (solid black line) are compared
with histograms obtained by numerically diagonalising 104 matrices of size N = 5000 and collecting
all eigenvalues in a strip of width ∆= (markers). The spectral distribution is also compared with the
elliptic law given by Eqs. (4.43-4.44) with σ2 = c and τ = −3c/4 (red dashed line). Error bars denote
the numerical error on the ρ value computed with population dynamics, as explained in Sec. 4.5.
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(a) <(z) = 0.1

(b) <(z) = 0.2

(c) <(z) = 0.3

Figure 5.4: The spectral distribution ρ along cuts parallel to the imaginary axis for
antagonistic random matrices on random regular graphs with c = 4. The present figure
is similar to Fig. 5.3, with the difference that the spectral distribution ρ shown is for cuts
parallel to the imaginary axis. The values of <(z) are given and the width ∆< = 0.02.
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eigenvalues is of order O(
√
N) [Edelman et al., 1994; Metz et al., 2019]. In presence of

such a singular behaviour, the binning resolution of width ∆= affects the estimate of the

spectral distribution, hence different binning choices can give different estimates. On

the other side, in the population dynamics we can compute ρ exactly. Accordingly, the

discrepancy in Fig. 5.3(c) is not due to a disagreement with the theory, instead it is a

systematic deviation of the empirical estimate of ρ due to the singular accumulation of

real eigenvalues. Although the adaptation of the elliptic law provides a good estimate

of the leading eigenvalue, as it can be seen also in Fig. 5.3(c), it provide significative

discrepancies on the spectral distribution, which is not uniform.

The three cuts parallel to the imaginary axis in Fig. 5.4 show also an excellent agree-

ment with the theory. In this case there is not a singular accumulation of eigenvalues,

hence only one and equal binning choice is reported for all the three panels. Remarkably,

here the highest values of the distribution are not at the centre, i.e., here at =(z) = 0,

but in proximity of the boundary. However, also in this case the slope becomes steep

in proximity of the boundary. The adaptation of the elliptic law in this case display

discrepancies both in the boundary and in particular in the distribution, which is not

uniform.

Figs. 5.3 and 5.4 also compare ρ with the adaptation of the elliptic law given by

Eqs. (4.43-4.44), which here amounts to σ2 = c and τ = −3c/4. While the boundary of

the spectrum is well predicted by the elliptic law, a feature already observed in Fig. 5.1,

this is not the case for the spectral distribution ρ.

5.2 Antagonistic matrices on Erdős-Rényi graphs

In order to study the effects of the degree fluctuations in the local network structure,

together with the irregularity given by the unbounded degree distribution pdeg, here

we consider the spectra of antagonistic matrices given by Model A. In this case the

distribution p(u, l) of the interactions is the same as in Sec. 5.1; however, differently

from the random regular graphs considered in Sec. 5.1, in the Model A the network

structure is given by Erdős-Rényi graphs.

5.2.1 Reentrance effect

Figure 5.5 presents the spectra of antagonistic matrices on Erdős-Rényi graphs with

mean degrees c = 4 and c = 2. As in Fig. 5.1, each panel shows 104 eigenvalues obtained

from direct diagonalization of ms = 104/N matrices, together with the boundary of the

spectrum for N infinitely large, which is obtained from the theory of Ch. 4.

The most striking feature observed in Fig. 5.5 is the qualitative difference between

c = 4 and c = 2 in the boundaries of the spectra of antagonistic matrices, for N → ∞.

For c = 4, the boundary of the spectrum has a shape similar to the elliptic law given

by Eqs. (4.43-4.45), and as it was for the random regular, the adapted elliptic law
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(a) N = 10 (b) N = 102 (c) N = 103 (d) N = 104

(e) N = 10 (f) N = 102 (g) N = 103 (h) N = 104

Figure 5.5: Spectra of antagonistic random matrices on Erdős-Rényi graphs (Model A in Sec. 2.2)
with mean degree c = 4 (panels from (a) to (d)) and c = 2 (panels from (e) to (h)). Gray markers
are the eigenvalues of ms matrices of size N , with ms = 104/N , that are randomly drawn from
this ensemble and are obtained through direct diagonalization routines. Continuous black lines are
theoretical results for N → ∞ obtained with the theory of Sec. 4.3. Red dashed lines shown in
panels (d) and (h) represent the boundary of the elliptic law given by Eqs. (4.43-4.45) with σ2 = c
and τ = −3c/4. Note that the horizontal and vertical scales are not fixed, for visualisation purposes.
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provides a good estimate for the boundary of the spectrum and the leading eigenvalue

of antagonistic matrices with c = 4. However, in this case the actual spectrum is more

shrunk on the real axis than in the correspondent ensemble on random regular graphs,

hence the adapted elliptic law here slightly overestimates the leading eigenvalue. For

c = 2 completely new features appear in the shape of the boundary of the support.

The spectrum and the leading eigenvalue for this sparse ensemble with c = 2 deviate

significantly from the elliptic ensembles. The difference is in this case mainly due to a

“reentrance” phenomenon in the support when approaching the real axis, and its effect

is that the leading eigenvalue is complex. The reentrance effect comes as a surprising

result, since it is is absent in the dense models, where the leading eigenvalue is real.

Similarly to the random regular spectra in Fig. 5.1, we observe a very good corre-

spondence between theory and the eigenvalues from direct diagonalization, in particular

the leading eigenvalue, already at sizes N ≈ 103−104, while only for smaller N deviation

appears, due to fluctuations in the spectral properties for matrices of finite size. Even

though the theory is exact in the limit N → ∞ to reveal the locally treelike structure,

it is quite remarkable to have such a good agreement in antagonistic matrices at values

of N ≈ 103 − 104, since for these values there are still many cycles in the graphs.

5.2.2 Spectral distribution

We complete here the study on the spectra of Model A by presenting results about

the spectral density, in analogy with Sec. 5.1.2. We focus here on mean connectivity

c = 4. Similarly to Fig. 5.3 and Fig. 5.4 for random regular graphs, also the results of

antagonistic matrices on Erdős-Rényi graphs provide an excellent agreement between the

empirical density of eigenvalues, obtained by direct diagonalization, and the numerical

solutions from the theory based on cavity method. This correspondence further validates

the theory that we developed to analyse the spectra of antagonistic matrices.

In analogy with Fig. 5.3(c), we find also in Fig. 5.7(c) that the estimates of the den-

sity on the =(z) = 0 cut behaves singularly for the Erdős-Rényi graphs. This behaviour

has been discussed in Sec. 5.1.2, and is expected to be a common feature for general non-

Hermitian sparse ensemble. However, Fig. 5.7(c) reveals a new feature which was not

present in its regular counterpart. From Fig. 5.7(c) , we observe that the spectral distri-

bution of antagonistic matrices on Erdős-Rényi graphs diverges for z → 0. Interestingly,

this divergence is also observed in the adjacency matrices of undirected Erdős-Rényi

graphs, see Ref. [Kühn, 2008], and in the adjacency matrices of directed Erdős-Rényi

graphs, see Ref. [Metz et al., 2019]. On the other hand, the divergence does not occur in

regular graphs. Hence, the divergence of the spectral distribution for z → 0 is a generic

feature due to network topology and is independent of the nature of the interactions Jij.

It would be interesting to have a precise understanding of the origin of the peak.

A comparison with the adapted elliptic law prediction reveals that also in this case

the distribution is significantly not uniform; other than the peak in the origin discussed
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Figure 5.6: Eigenvalues of one matrix sampled from Model A with c = 4, as in Fig. 5.5,
but now with N = 5000. The blue lines denote the cuts along which we compute the
spectral distribution ρ in Figs. 5.7 and 5.8. The red dashed line is the elliptic law given
by Eqs. (4.43-4.45) with σ2 = c and τ = −3c/4.
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(a) =(z) = 2

(b) =(z) = 0.6

(c) =(z) = 0

Figure 5.7: The spectral distribution ρ along cuts parallel to the real axis for random matrices of
Model A with c = 4. The values of =(z) are indicated in the captions and the cuts are shown in
Fig. 5.6. Theoretical results from the cavity method (solid black line) are compared with histograms
obtained by numerically diagonalising 104 matrices of size N = 5000 and collecting all eigenvalues
in a strip of width ∆= (markers). The spectral distribution is also compared with the elliptic law
given by Eqs. (4.43-4.44) with σ2 = c and τ = −3c/4 (red dashed line). Error bars denote the
numerical error on the ρ value computed with population dynamics, as explained in Sec. 4.5.
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(a) <(z) = 0.1

(b) <(z) = 0.2

(c) <(z) = 0.3

Figure 5.8: The spectral distribution ρ along cuts parallel to the imaginary axis for
random matrices of Model A with c = 4. The present figure is similar to Fig. 5.3, with
the difference that the spectral distribution ρ shown is for cuts parallel to the imaginary
axis. The values of <(z) are given and the width ∆< = 0.02.
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above, there are strong non-uniformity in the slopes of the profiles, in particular in

correspondence of the intersections with the imaginary and real axes.

5.3 Emergence of long tails in the spectra of mixture matrices

on Erdős-Rényi graphs

(a)N = 10 (b)N = 102 (c)N = 103 (d)N = 104

Figure 5.9: Spectra of mixture random matrices on Erdős-Rényi graphs with mean
degree c = 2 (Model B in Sec. 2.2). Gray markers are the eigenvalues of ms matrices
of size N , with ms = 104/N , randomly drawn from this ensemble and obtained through
direct diagonalization routines. Continuous black lines are theoretical results for N →
∞ obtained with the cavity theory of Sec. 4.3. Red dashed lines shown in panel (d)
represents the boundary of the elliptic law given by Eqs. (4.43-4.45) with σ2 = c and
τ = −3c/5.

In the study of antagonistic matrices we saw that for small mean degrees and on

Erdős-Rényi graphs we saw the emergence of the reentrance phenomenon in the spectra,

which was absent in the random regular case. Here we address the study to answer the

question whether a reentrance can be found also in mixture matrices on Erdős-Rényi

graphs with mean degree c = 2. Accordingly, we focus here on the boundary of S for

matrices of Model B, namely, mixture matrices in for which 90% of the interactions

are of the predator-prey type, 5% of competitive interactions, and 5% are mutualistic

interactions.
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Figure 5.9, shows a very good agreement between eigenvalues from direct diagonal-

ization and the boundary of the spectrum as predicted by the theory for N →∞, a part

from the sample fluctuations for small sizes, similarly to the antagonistic counterparts

Fig. 5.5, panels (e)-(h). Remarkably, the big difference with the antagonistic case is

evident when approaching the real axis, where here the boundary of the support shows

opposite convexity and the eigenvalues extend on the real axis. The reentrant behaviour

observed at c = 2 for antagonistic matrices (see Fig. 5.5) has disappeared for mixture

matrices. In addition, we observe that mixture matrices are characterised by long tails of

eigenvalues on the real axis that persist for large sizes N , whereas they are absent in the

spectra of antagonistic matrices when increasing the system size N . These observed tails

are reminiscent of the Lifshitz tails in symmetric and sparse random matrices [Bapst and

Semerjian, 2011; Khorunzhiy et al., 2006; Kühn, 2008; Rodgers and Bray, 1988; Slanina,

2012], where the support S covers the whole real axis. The tails of eigenvalues on the real

axis are typical in the spectra of sparse random matrices on undirected random graphs

defined on unbounded degree distributions, as discussed in Ch. 1, and their absence in

the antagonistic matrices renders this ensemble a very interesting exception. Such tails

suggest a potential divergence of the leading eigenvalue of sparse large matrices. We

investigate more about the potential divergence of the leading eigenvalue and the tails

of the spectrum in antagonistic and mixture matrices in Ch. 6.

We discuss finally about the estimate of the boundary provided by the adaptation

of the elliptic law in Eqs. (4.43-4.45). Discrepancies emerge also for mixture matrices,

as shown in Fig. 5.9, and this time are due to the emergence of tails on the real line as

discussed above, which cannot be described with the elliptic law. Therefore, especially

for mixture matrices, the predictions on the leading eigenvalue that can be obtained by

neglecting the local graph topology and using a adaptation of the elliptic law to the

sparse case are completely unreliable, and more studies on the leading eigenvalue are

needed (see Ch. 6).
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5.4 Summary of this chapter: the main results

We found a reentrance in the boundary of the support of the spectral distribution for

matrices of model A with mean degree c = 2, namely for antagonistic matrices on

Erdős-Rényi graphs (see Fig. 5.5). We named this phenomenon as the reentrance effect.

Remarkably, this behaviour characterises antagonistic matrices of Model A, where the

degree distribution has fluctuations and the interactions are of only predator-prey kind.

Indeed, the reentrance effect disappear when changing one of the two features: when the

degree distribution is regular (see Fig. 5.1), and when interactions contains also a small

fraction of mutualistic or competitive kind (see Fig. 5.9).

Another important result that we found is the appearance of long tails on the real

axis in the spectra of mixture matrices, which persist at large system sizes. These tails

are surprisingly absent in the antagonistic case. The existence of these tails suggests a

potential divergence of the leading eigenvalue as a function of the system size.

Finally, we have corroborated our theory on the spectral distribution and its support

for infinitely large sparse matrices with pairwise correlated interactions by comparing the

theoretical predictions with data obtained from direct diagonalization of finite matrices.

Remarkably, already at system sizes of O(103) the theory and the direct diagonalization

data result to be in very good agreement.



Chapter 6

The leading eigenvalue: stability and

dynamical implications

In this chapter we aim to characterise more in detail the existence of tails of eigenvalues

and the reentrance effect found in Ch. 5, by focusing on the leading eigenvalue λ1. As

discussed in Ch. 1, λ1 is also the key variable for the stability and dynamical properties

in the proximity of the fixed points of the dynamics. Chapter 5 has shown also that the

theory that we have developed in Ch. 4 is robust in predicting the support S and the

spectral distribution ρ for large sparse random matrices with pairwise correlated interac-

tions. Equipped with this powerful theory, this chapter presents a quantitative study on

the leading eigenvalue. In Sec. 6.1 we briefly discuss properties of the leading eigenvalue

and how it can be determined from the theory of Ch. 4. Section 6.2 studies the depen-

dence of the leading eigenvalue on the system size for matrices of Model A (antagonistic)

and Model B (mixture), defined in Sec. 2.2. Section 6.3 presents a numerical study for

the theoretical prediction of the leading eigenvalue of Model A and Model B. In Sec. 6.4

we discuss the studies of Secs. 6.2-6.3 in light of the stability of the associated fixed

points. Section 6.5 explores the role of the network topology on the leading eigenvalue

and its impact on the stability. In Sec. 6.6 we characterise the reentrance effect of Model

A by studying the imaginary part of the leading eigenvalue as a function of the mean

degree. Finally, we explore the consequences of the reentrance effect and of the study

in Sec. 6.7 at the level of the dynamics of antagonistic systems in the vicinity of fixed

points.

6.1 The leading eigenvalue of sparse random matrices

In general the leading eigenvalue of sparse random matrices is not self-averaging. This

can be understood from the fact that small cycles persist in the limit N →∞ for sparse

random matrices when the underlying graph has a giant component (in Appendix A.8

we discuss the criteria for the existence of a giant component in various random graph

models). Indeed, the small cycles may create stochastic outlier eigenvalues in the point
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spectrum that may also be leading eigenvalues, as discussed in Ref. [Bonneau et al.,

2017; Neri and Metz, 2020]. Accordingly, when considering the leading eigenvalue λ1,

there is a finite, albeit small, probability that λ1 is contributed by a cycle of finite length,

and therefore the leading eigenvalue is not a self-averaging quantity. On the other side

we remind that, as discussed in Sec. 3.6, the support S is equal (see Eq. (3.56)) to the

continuous part of the spectrum that is self-averaging. Although we cannot compute the

exact contribution of cycles to λ1, we can use the theory presented in Ch. 4, to compute,

when the underlying graph has a giant component, the typical value λ∗1 of the leading

eigenvalue from the support, as follows

λ∗1 = argmax {<(z) : z ∈ S} , (6.1)

where in Eq. (6.1), as in Eq. (A.1), we use the convention to choose the value with

the largest imaginary part in case there are several eigenvalues with a maximum <(z).

We remind that, as discussed in Ch. 3, the cavity method for locally treelike matrices

become exact in the limit of N →∞ to determine self-averaging quantities, such as the

spectral distribution, its support S and the typical value λ∗1. In fact, these self-averaging

quantities are not influenced by the finite number of finite length cycles that can exist

in the limit of N →∞, which at most produces stochastic outliers.

We note that, as argued in Ref. [Neri and Metz, 2020], when there exists a giant com-

ponent it is expected that the contribution of the small cycles to the leading eigenvalue

is small, even in the limit of N → ∞, and λ1 is dominated by its typical value λ∗1. In

this Chapter we focus on the regime when there exists a giant component.

Below we discuss how the typical value λ∗1 of the leading eigenvalue can be obtained

by using Eq. (6.1).

6.1.1 Determination of the leading eigenvalue

We show here how we have implemented Eq. (6.1) to obtain λ∗1, i.e., the typical value

of the leading eigenvalue for antagonistic matrices of Model A, from the population

dynamics results for the boundary of the support S (that can be determined as explained

in Sec. 4.6).

Since for antagonistic matrices the slope of the boundary of S is vertical, as shown

in Fig. 5.5, one needs to control the fluctuations in the population dynamics algorithm

to obtain an accurate value of λ∗1. To this aim, we use a cubic fit on the values for

the boundary of S obtained with the population dynamics algorithm. This procedure

is shown in Fig. 6.1, which shows data points for the boundary of S in the vicinity of

λ∗1 for three values of the mean degree c and also shows a cubic fit through these data

points. We finally obtain an accurate estimate of λ∗1 by computing the maximum value

of the fitted cubic polynomial.

In this chapter we apply the same method discussed here to determine the typical
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(a) c = 4 (b) c = 2

(c) c = 1.3

Figure 6.1: Cubic fits to the data points, obtained with the population dynamics algorithm
described in Sec. 4.6, for the boundary of the support set in the vicinity of λ∗1. Results shown
are for Model A with mean degrees c = 4, c = 2 and c = 1.3. Panels (a) and (b) are a zoom of
the spectra shown in Fig. 5.5.
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value of the leading eigenvalue from the theory.

6.2 Dependence of the leading eigenvalue on the system size for

antagonistic and mixture matrices

Inspired by the results on the boundary of the support that we presented in Ch. 5, in

particular the differences between the spectra of Model A (antagonistic) in Fig. 5.5 and

of Model B (mixture) in Fig. 5.9, we present here a study on the leading eigenvalue as a

function of the system size N for matrices of Model A and of Model B at a fixed value

of the mean degree c. We diagonalise 103 matrices sampled from Model A and Model B

with c = 4 as a function of N , and compute the sample means of the leading eigenvalue

λ1. The sample means are estimates of the mean value

〈<(λ1)〉 := 〈<(λ1(A))〉A (6.2)

of the leading eigenvalue λ1, where by 〈〉A we denoted the ensemble average over the

space A of random matrices A, which here is either Model A or Model B.

Figure 6.2: Real part 〈<[λ1]〉 of the mean value of the leading eigenvalue λ1 as a
function of N for antagonistic matrices (Model A) and mixture matrices (Model B) on
Erdős-Rényi graphs with mean degree c = 4. Markers are sample means of λ1 obtained
from directly diagonalising 103 matrices. The continuous red line is the typical value of
<(λ∗1) obtained with the theory based on the cavity method, as discussed in Sec. 6.1,
and the black dashed line is obtained from fitting the function a log(N) + b to the data.

Figure 6.2 shows the results. On one side, for antagonistic random matrices 〈<[λ1]〉
is almost independent of N , and it exhibits very small fluctuations, on the other side

for mixture matrices 〈<[λ1]〉 diverges logarithmically as a function of N . We remind
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here that, by definition of the models A and B (see Ch. 2), 100% of the interactions are

predator-prey like in Model A, whereas 90% of the interactions are predator-prey like in

Model B, and the remaining interactions are present in the same probability, i.e., 5% are

mutualistic and 5% competitive. The result found here means that only a small non-zero

fraction of mutualistic or competitive interactions is enough to imply major changes in

the behaviour of the leading eigenvalue.

In Figure 6.2 we show also for Model A only the typical value λ∗1 of the leading

eigenvalue evaluated from the theory, as discussed in Sec. 6.1, which is in very good

agreement with the sample means data from direct diagonalization already at small

values of N ≈ 102. As we show in the next section, the theory in the large N limit

provides a finite value λ∗1 for antagonistic matrices, while for mixture matrices we obtain

that λ∗1 is infinitely large.

6.3 Theoretical predictions for the leading eigenvalue of

antagonistic and mixture matrices: a numerical study

Here we discuss the theoretical predictions on the typical value λ∗1 of the leading eigen-

value for infinitely large matrices of Model A and Model B with c = 4, consistently with

Fig. 6.2, in order to highlight the differences between these two models at the level of

λ∗1. In order to do so, we present now a numerical study on the boundary of the support.

Indeed, as discussed in Sec. 6.1, λ∗1 can be determined from the support S. Accordingly,

a detailed numerical study on the boundary of S can lead to important conclusions on

λ∗1, in particular to determine whether it is finite or not.

As explained more in detail in Sec. 4.6, the boundary of S is obtained by determin-

ing the value of z that separates the region where 〈|h|〉Q̂ diverges from the region where

〈|h|〉Q̂ converges to zero, where Q̂ is the population of size Np, obtained with the popu-

lation dynamics algorithm, that estimates the solution of the distributional equation in

Eq. (4.24). We focus on the real axis, that is where λ∗1 lies for matrices of Model A and

Model B with c = 4.

Practically, we evaluate 〈|h|〉Q̂ as follows. We initialise the (g(i), h(i)) with the uniform

distribution

pinit(g, h) =
1

∆2
, g ∈ [−∆,∆], h ∈ [−∆,∆], (6.3)

for which we have set ∆ = 10, but the precise value of ∆ does not influence the results.

Subsequently, we compute

〈|h|〉Q̂ =
1

nrNp

nrNp∑
j=1

|h(j)|, (6.4)

with nr = 500. In addition, in order to obtain an estimate of the fluctuations in 〈|h|〉Q̂
between different realisations of the population dynamics algorithm, we repeat this pro-

cedure a N = 10 times, i.e., we compute 〈|h|〉Q̂ for N runs of the population dynamics
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algorithm with different initial realisations of (g(i), h(i)).

Figure 6.3 shows the mean of log 〈|h|〉Q̂ taken over theN realisations of the population

dynamics algorithm as a function of <(z) for Model A and Model B with mean degree

c = 4 and =(z) = 0. Plots show log 〈|h|〉Q̂ for various values of the population size Np

and we evaluate it at different number ns of sweeps (ns is proportional to the number of

iterations of the population dynamics algorithm, see Sec. 4.6). The error on the mean

value of log 〈|h|〉Q̂ is obtained from the standard deviation of log 〈|h|〉Q̂ on the sample of

N = 10 realisations.

In the case of antagonistic matrices, all lines intersect in a common point, which

provides the estimate of the boundary of the support set S. On the other hand, in the

case of mixture matrices, the intersection point for different ns increases as a function

of the population size Np. This fact implies that the intersection point diverges as a

function of Np and the real axis belongs to the support set S.

In terms of the typical value λ∗1 of the leading eigenvalue, the results obtained here

imply that λ∗1 is not finite for model B, while it is finite for Model A. As we anticipated

before, these results λ∗1 corroborates the result of Fig. 6.2 that shows that the leading

eigenvalue of mixture matrices diverges as a function of N , while the leading eigenvalue of

antagonistic matrices converges to a finite value as a function of N . Although we can not

compute exactly the contribution of small cycles on the leading eigenvalue, as discussed in

Sec. 6.1, Fig. 6.2 suggests some qualitative considerations on this contribution. More in

detail, the very good agreement between the direct diagonalization results on the sample

means already at small values of N , where there are many cycles, and the typical value

from the theory indicates that the contribution of small cycles to the leading eigenvalue

is small, and λ1 results to be dominated by its typical value λ∗1.

The results found for mixture matrices of Model B, both in terms of the logarithmic

dependence on the system size of the mean 〈<[λ1]〉 in Fig. 6.2, and of the theoretical

prediction of the divergence of its typical value λ∗1 in the infinite size limit as discussed

above, provide a more quantitative characterisation of the tails observed in the spectra of

matrices of Model B presented in Fig. 5.9. We observe that these results found in mixture

matrices are similar to the divergent behaviour of the leading eigenvalue of undirected

graphs, and to the Lifshitz tails in the spectrum of sparse and symmetric matrices, where

the support of the spectral distribution contain the whole real axis (see Ch. 1).

6.4 Large antagonistic systems can be stable, while mixture can

not

The different results on the leading eigenvalue of matrices of Model A and Model B

presented in Sec. 6.2 and in Sec. 6.3 lead to important implications at the level of the

stability of the associated fixed points. Indeed, within the linearised dynamics approach

presented in Ch. 1, the stability criteria in Eq. (1.13) assures that, when a system is



6.4. Large antagonistic systems can be stable, while mixture can not 101

(a) Antagonistic

(b) Mixture

Figure 6.3: Plots of log 〈|h|〉Q̂ as a function of <(z) for antagonistic matrices (Model A
in Sec. 2.2, panel (a)) and mixture matrices (Model B in Sec. 2.2, panel (b)). The mean
degree c = 4 and =(z) = 0. The markers are obtained with the population dynamics
algorithm described in Sec. 4.6 with the population size Np and the number of sweeps
ns as given in the legend, and the error bars denote the estimated error obtained with
repeated realisations of the population dynamics algorithm.
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characterised by a finite self-regulation parameter d that is large enough, if the real part

of the leading eigenvalue does not increase as a function of N , then the fixed points

are stable. We found that this is the case for antagonistic matrices of Model A, i.e.,

infinitely large systems with predator-prey interactions can be stable. On the other side,

for mixture matrices of Model B a finite but large d can not guarantee the stability

of the fixed point, since the leading eigenvalue grows with N and the system becomes

almost surely unstable for large N . In other words, infinitely large systems that contain

mutualistic and competitive interactions are always unstable.

Remarkably, the results for mixture matrices have been obtained using πA = 0.9 for

Model B, indicating that a small fractions of competitive (i.e., 5%) and mutualistic i.e.,

(5%) interactions are sufficient to render a system unstable in the infinite size limit.

As a consequence, sparse and large dynamical systems are in general unstable, unless

they only contain predator-prey interactions. This behaviour represents a surprising

result in the stability of complex systems, because the dense ensembles with predator

prey interactions become unstable when large enough, as well as sparse systems with

symmetric interactions (see Ch. 1). We remind that the sparse oriented ensemble (see

Ch. 2 and Sec. 4.4.1), characterised by unidirectional interactions on sparse directed

random graphs, is also another example of stable system in the infinite size limit.

Given these results, in the next section we investigate how the system stability,

represented by the leading eigenvalue, is influenced by the mean degree and the degree

fluctuations.

6.5 Influence of network topology on the leading eigenvalue

Here we study how the leading eigenvalue depends on the network topology, in particular

the mean degree c and the degree fluctuations. Given that antagonistic systems can be

stable, as shown in Sec. 6.4, we focus on this ensemble to infer more stability properties.

By first looking at the differences between the spectra of large antagonistic matrices

on random regular graphs and Erdős-Rényi graphs presented in Ch. 5, for a fixed value

of the mean degree c = 4, we can set the study on how the network topology influences

the stability properties of antagonistic systems. In particular, we look at one realisation

of a large matrix of size N = 104, which are panels (d) of Fig. 5.1 and Fig. 5.5, and

we put them next to each other in panels (a) and (b) of Fig. 6.4, where we set the

same horizontal and vertical scales. More in detail, we set the horizontal range to be

equal to the biggest projection of the two spectra on the real axis (which is given by the

random regular, in panel (a)), and we set the vertical range to be equal to the biggest

projection of the two spectra on the imaginary axis (which is given by the Erdős-Rényi,

in panel (b)). Fig. 6.4 clearly shows the qualitative difference between the two spectra:

from panel (a) to panel (b), the eigenvalues shrink on the real axis, and elongate on the

imaginary axis. This shrinking behaviour translates, in particular, into the fact that the
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(a) Random regular (b) Erdős-Rényi

Figure 6.4: Spectra of antagonistic random matrices on a random regular graph (panel
(a)) and on a Erdős-Rényi graph (panel (b)) (Model A in Sec. 2.2) with mean degree
c = 4, as in panels (d) of Fig. 5.1 and Fig. 5.5. To facilitate the visual comparison, we
set here the same horizontal and vertical scales in the two panels: the horizontal and
vertical ranges are set exactly to cover the biggest projections, among the two spectra
in the two panels, of the support on the real and imaginary axes.
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typical value λ∗1 of the leading eigenvalue of antagonistic matrices on Erdős-Rényi graphs

is smaller than the one on random regular graphs, for c = 4.

In terms of stability, this means that a smaller d is needed to have stability for antag-

onistic matrices on Erdős-Rényi graphs than on random regular graphs. Equivalently, for

all the values of d that are greater than the leading eigenvalue of antagonistic matrices on

Erdős-Rényi graphs, but smaller than antagonistic matrices on random regular graphs,

one has that the first systems are stable, while the second are not. In synthesis, for c = 4,

antagonistic systems on Erdős-Rényi graphs seem to be more stable than antagonistic

matrices on random regular graphs. This surprising effect, derived for a fixed value of the

mean degree c, is a nontrivial stabilising effect that is due only to the degree fluctuations

in the network topology of Erdős-Rényi graphs. In the next subsection, we analyse what

happens when we vary the mean degree c, in order to systematically confirm or not this

behaviour.

Since we want to understand also if the effects of network topology are generic or

depend on the interactions, we consider the oriented random matrices (see Ch. 2), where

the interactions are unidirectional, because also in this ensemble the leading eigenvalue

of an infinitely large matrix is finite (see Ch. 1 and [Neri and Metz, 2020]). For the

antagonistic ensemble, we consider the distribution p̃ given by Eq. (2.19), and for the

oriented ensemble p̃ is an arbitrary distribution with unit variance and zero mean. In-

deed, for oriented matrices the precise form of p̃ does not matter as <(λ1) only depends

on its variance and mean value.

We present now two analyses. First, in Sec. 6.5.1, we study how the leading eigenvalue

of antagonistic and oriented matrices depends on the mean degree of the underlying

graph, for random regular and Erdős-Rényi graphs. Second, in Sec. 6.5.2, we consider

the antagonistic and oriented matrices on a random graph ensemble described by a

prescribed degree distribution pdeg that allows to control variance

Var(k) = 〈k2〉pdeg − c2, (6.5)

in order to study how the degree fluctuations impact the stability.

6.5.1 Dependence of the leading eigenvalue on the mean degree

Here we study the dependence of the typical value of the leading eigenvalue on the

mean degree c, for infinitely large antagonistic and oriented matrices on Erdős-Rényi

graphs and random regular graphs, from the theory as discussed in Sec. 6.1. The aim

is to understand systematically whether the stabilising effect of Erdős-Rényi graphs for

antagonistic matrices, discussed above, depends on the mean degree and the role of the

nature of interactions.

We perform our analyses in the regimes above the percolation threshold, i.e., where a

large connected, component exist for undirected graphs (for the antagonistic ensembles),
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and where a large strongly connected component exists for directed graphs (for the

oriented ensembles). Otherwise, below the percolation threshold, small cycles give a

dominant contribution on the leading eigenvalue [Neri and Metz, 2020] and Sec. 6.1).

We discuss the criteria for the existence of a giant component in Appendix A.8. These

regimes are given by c > 1 for Erdős-Rényi graphs, c > 2 for random regular graphs

for the undirected ensembles, and by c > 2 Erdős-Rényi graphs, c > 3 for the random

regular graphs for the directed ensembles.

Figure 6.5(a) shows <(λ∗1) for the antagonistic ensemble on Erdős-Rényi graphs

(Model A), and on random regular graphs, as a function of c. First, we find that the

value <(λ∗1) monotonically increases as a function of c for every ensemble. Second, in

light of the discussions on stability made above, Fig. 6.5(a) shows that if interactions

are of the predator-prey type, then Erdős-Rényi graphs are more stable than random

regular graphs for all values of c, since the <(λ∗1) of Erdős-Rényi graphs is always smaller

than the one correspondent to random regular ones.

Figure 6.5(b) presents the real part of the leading eigenvalue as a function of c for ori-

ented matrices, for a comparison with the study for antagonistic matrices in Fig. 6.5(a).

The interactions (Jij, Jji) for oriented matrices are random variables drawn from the

distribution given by Eq. (2.5) with p̃ an arbitrary distribution with zero mean and unit

variance, i.e., 〈l2〉p̃ = 〈u2〉p̃ = 1. In this case, the boundary of the support set S is given

by [Neri and Metz, 2020]

|z|2 =
〈k(k − 1)〉pdeg

2c
, (6.6)

as derived also in Appendix 4.4 from the theory based on the cavity method presented

in Ch. 4, and therefore

<(λ∗1) =

√
Var(k) + c2 − c

2c
. (6.7)

Comparing the values of the typical value <(λ∗1) of the leading eigenvalue in Figs. 6.5(a)

and 6.5(b), we observe that dynamical systems with predator-prey interactions are more

stable than those with unidirectional interactions. Moreover, we find that for antago-

nistic systems, characterised by having only predator-prey interactions, on Erdős-Rényi

graphs are more stable than when on random regular graphs, while for oriented systems,

characterised by unidirectional interactions, it is the other way around. We study more

in detail the dependence of the leading eigenvalue on the degree fluctuations in the next

section

Figs. 6.5(a) and 6.5(b) show also the leading eigenvalue that is obtained from the

adaptation of the elliptic law in Sec. 4.7. Comparing the results for sparse matrices

obtained with the cavity method with the predictions from the adaptation of the elliptic

law, which ignores the presence of an underlying network, we find that the elliptic law

provides a reasonable quantitative prediction of the leading eigenvalue of antagonistic

matrices only for values c & 4, and that the best agreement is given by random regular

graphs. On the other side, for oriented matrices we found that the adapted elliptic law
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(a)Antagonistic

(b)Oriented

Figure 6.5: Real part <(λ∗1) of the typical leading eigenvalue value as a function of the
mean degree c for antagonistic matrices [Panel (a)] and oriented matrices [Panel (b)],
both defined on either Erdős-Rényi or regular graphs. For antagonistic matrices p̃ is
given by Eq. (2.19) and for oriented matrices p̃ is an arbitrary distribution with unit
variance and zero mean. Panel (a): predictions from the theory, as discussed in Sec. 6.1,
(markers) are compared with the elliptic law given by Eqs. (4.43-4.45) (dashed blue
line). The red line connecting the red crosses is a guide to the eye. Panel (b): analytical
predictions from Eq. (6.7) are compared with the elliptic law given by Eqs. (4.43-4.45).
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predictions match very well the theory for Erdős-Rényi graphs, while it systematically

deviates from the random regular data.

From the study in this section, we can conclude that independently from the interac-

tions and the underlying graph structure, the fixed points of the corresponding systems

are more likely to be unstable when increasing the mean degree, as it was first shown in

dense graphs in terms of connectance [May, 1972].

We investigate more on the role of the network topology on stability in the next

section where we directly study how the degree fluctuations affect system stability, by

interpolating between the two extreme cases of Erdős-Rényi (maximum degree fluctua-

tions) and random regular graphs (no degree fluctuations).

6.5.2 Dependence on the degree fluctuations

Here we explore the role of degree fluctuations in oriented and antagonistic ensembles,

in order to characterise the impact on stability for the corresponding systems.

We are interested to study the stability properties of infinitely large matrices, as in

the previous Sec. 6.5.1, with the theoretical approach to determine the real part of λ∗1, as

discussed in Sec. 6.1. From Figs. 6.5(a) and 6.5(b) we gathered first evidences that degree

fluctuations can have both a stabilising and a destabilising effect on system stability,

depending on the kind of the interactions. Here, we aim at systematically studying

the effect of degree fluctuations on system stability by analysing the dependency of the

leading eigenvalue on the variance of the degree distribution at a fixed value of the mean

degree c, interpolating between the random regular and Erdős-Rényi graphs discussed

in the previous section. In other words, we study here the leading eigenvalue at fixed

values of c in Figs. 6.5(a) and 6.5(b), where the independent variable is now the variance

Var(k).

We therefore consider random graphs characterised by the prescribed degree distri-

bution

pdeg(k) = aδk,c + (1− a)e−c
ck

k!
, (6.8)

where a ∈ [0, 1]. By varying the parameter a, we also modulate the variance of this

degree distribution, which, as it can be easily verified, is given by

Var(k) = c(1− a), (6.9)

while keeping the mean degree c fixed.

In Fig. 6.6(a), we plot the real part of the leading eigenvalue <(λ∗1) for antagonistic

matrices with p̃ given by Eq. (2.19) as a function of the variance of the degree distribution

pdeg in Eq. (6.8) for different small discrete values of c. To facilitate the interpretation

of the figure, we look at the extremal cases. On one side, at the left of the plot, when

Var(k) = 0, it corresponds a = 1, i.e., the underlying graph is a random regular graph.
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(a)Antagonistic

(b)Oriented

Figure 6.6: Real part of the leading eigenvalue <(λ∗1) as a function of the variance
Var(k) for antagonistic and oriented random matrices, both defined on random graphs
with the prescribed degree distribution Eq. (6.8). For antagonistic matrices p̃ is given
by Eq. (2.19) and for oriented matrices p̃ is an arbitrary distribution with unit variance
and zero mean. The markers in Panel (a) are obtained with the theory as discussed in
Sec. 6.1, and lines are guides to the eye. The lines in Panel (b) are the theoretical results
given by Eq. (6.7).
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On the other side, at the right of the plot, when Var(k) = c, — and hence the max

value on the horizontal axis is determined by the value of c — it corresponds a = 0,

i.e., the underlying graph is a Erdős-Rényi graph, in the infinite size limit. We observe

that degree fluctuations tend to stabilise antagonistic dynamical systems as the real part

of the leading eigenvalue decreases as a function of Var(k) for c = 3, 4. We find this

fact as another very interesting behaviour of the antagonistic ensemble, since the leading

eigenvalue typically grows with the maximal degree in sparse ensembles (see Ref. [Chung

et al., 2004; Krivelevich and Sudakov, 2003] and Ch. 1), which is larger when the degree

fluctuations increase, at fixed c. We do not represent here larger values of c, since we

found that their content is equivalent to what has been found for c = 3, 4. A notable

exception is instead when the mean degree c = 2, in which case <(λ∗1) increases as a

function of the degree fluctuations.

In Fig. 6.6(b), we plot the leading eigenvalue for oriented matrices with p̃ an arbitrary

distribution with zero mean and unit variance. Remarkably, in this case we obtain

the opposite result, namely, that degree fluctuations always destabilise systems with

unidirectional interactions, which is equivalent to the fact that in Fig. 6.5 the Erdős-

Rényi curve is always above the points corresponding to random regular graphs. In fact,

this result follows readily from Eq. (6.7). The interesting variability in the behaviour of

the leading eigenvalues for antagonistic and oriented matrices, that we found in Sec. 6.5.1

and in Sec. 6.5.2, with also different behaviours for c = 2 than c = 3, 4 in Fig. 6.6(a),

allows further considerations on the relation between system stability and the topology

of the associated graph. Naively, one could make the hypothesis that the stability of

systems defined on a graph is related to the size of its giant, i.e., largest connected,

component. In particular a big giant component may have high chances that one of

its nodes is unstable to local perturbations that diffuse to the whole giant component,

giving rise to a global instability if the connected component spans the entire system.

If this were the case, graphs with giant components should be associated to less stable

systems and the different behaviour of the leading eigenvalue as a function of the degree

fluctuations should be originated by opposite trends of the size of the giant component

in antagonistic and oriented matrices. We explore this possibility in Appendix A.8 by

evaluating the size of the giant component in the two cases. This comparison does not

confirm the hypothesis, interestingly showing that the size of the giant component of

the underlying interaction network does not directly influence the stability property of

the system. Finally, the result we found suggest that the stabilising effects due to the

networks topology depend intrinsically on the nature of the interactions.
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6.6 Phase transition on the imaginary part of the leading

eigenvalue for antagonistic systems

In Sec. 5.2 we found a reentrance phenomenon in the boundary of the support S of Model

A (see Sec. 2.2) when c = 2 (see Fig. 5.5). Here we aim to systematically characterise this

behaviour in terms of the imaginary part of the leading eigenvalue. Indeed, the reentrance

effect translates into the fact that the typical eigenvalue λ∗1 (see Sec. 6.1) has a non-zero

imaginary part. Remarkably, we observed that the reentrance phenomenon is absent in

Model B, which has only a small fractions of competitive (i.e., 5%) and mutualistic i.e.,

(5%) interactions, and the majority (i.e., 90%) of predator-prey interactions. Indeed, the

spectra of matrices with c = 2, shown in Fig. 5.9, are qualitatively completely different

from the corresponding Model A with c = 2, and they are also characterised by tails

of real eigenvalues. Accordingly, the reentrance phenomenon is a special feature that is

found in antagonistic matrices with only predator-prey interactions, and it is lost when

a small fraction of not predator-prey interactions are added. Here we aim to study

the imaginary part of the leading eigenvalue as a function of the mean degree c, which

determines also for which values of c there exists a reentrance effect in the corresponding

support.

Figure 6.7: Probability Prob[λ1 ∈ R] that λ1 is located on the real line as a function of
N . Markers are numerical results obtained from directly diagonalising 104 matrices from
the antagonistic ensemble (Model A, red squares) and 103 matrices from the mixture
ensemble (Model B, black circles), both for Erdős-Rényi graphs with a mean degree
c = 2.

First, we considered direct diagonalization results of matrices with mean degree c = 2,
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and we compute the probability π< that their leading eigenvalue is real, i.e.,

π< = Prob[λ1 ∈ R]. (6.10)

In particular, we study this probability π<, estimated over a sample of 103 matrices,

as a function of the system size N , for antagonistic matrices of Model A and also for

mixture matrices of Model B, in order to highlight the differences between these two

ensembles also at finite sizes. We have obtained these results by using the criterion

=(λ1) < 10−13 to identify an eigenvalue as real, where 10−13 is much smaller than the

typical distance between two eigenvalues. The Figure 6.7 shows that the distinction

between these two ensembles is evident already at small values ≈ 102 of the system

size, where the probability that λ1 is real for mixture matrices is more than four times

larger than it is for antagonistic matrices. Also, for mixture matrices π< approaches

fast the value of one, i.e., already when N = 103 the leading eigenvalue is real with

probability one. On the other side, for antagonistic matrices λ1 always has a non-zero

imaginary part with finite probability. Remarkably, just as in Fig. 6.2, and in the spectra

in Figs. 5.5,5.9, it is sufficient to have a small fraction of mutualistic and competitive

interactions to obtain completely different results, which here is a real-valued λ1. Hence,

all interactions must be of the predator-prey type in order to have a non-real leading

eigenvalue. From Fig. 6.7, it is evident that λ1 is not self-averaging, consistently with

Sec. 6.1: Indeed, if the leading eigenvalue were self-averaging, then π< in Eq. (6.10)

should tend either to one or zero in the limit N →∞. Figure 6.7 implies also that there

are strong fluctuations in the imaginary part of the leading eigenvalue of antagonistic

matrices. Indeed, Fig. 6.7 shows that λ1 is typically imaginary, but it is real with a finite,

albeit small, probability, and this probability decreases very slowly when increasing N .

Although we can not compute the exact contribution of small cycles on the leading

eigenvalue and on its distribution, the spectra of antagonistic matrices in Fig. 5.5 suggest

that many real eigenvalues are contributed by cycles, which are more abundant at small

values of N .

We focus now on Model A. Since λ1 is a random variable such that its imaginary part

displays strong fluctuations and with a non-zero probability to be real at fixed N , we

assume here that the distribution of the imaginary part of the leading eigenvalue takes

the form

p (=(λ1)) = π< δ(=(λ1)) + (1− π<)pc(=(λ1)), (6.11)

where π< is defined in Eq. (6.10), and it is estimated as in Fig. 6.7 for a fixed value of

N , and where pc(=(λ1)) a continuous distribution for non-real values of =(λ1). From

general considerations on sparse graphs, it is expected that in the limit N → ∞ the

continuous component tends to [Neri and Metz, 2020]

pc(x) = aδ(x−=(λ∗1)) + (1− a)pcycle(x), (6.12)
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where =(λ∗1) is the typical value of =(λ1) and pcycle(x) is the remaining distribution

describing the nontypical values of =(λ1), which are originated due to the presence of

small cycles in the graph [Bonneau et al., 2017]. Above the percolation threshold, it is

expected that the leading eigenvalue is dominated by its typical value =(λ∗1), and hence

its weight in the distribution dominates over the contribution of cycles, i.e., a ≈ 1 [Neri

and Metz, 2020]. Conveniently, as discussed in Sec. 6.1, the imaginary part of the typical

value =(λ∗1) can be predicted, in the limit N → ∞ by the theory based on the cavity

method that we presented in detail Ch. 3,4.

From direct diagonalization of antagonistic matrices, we can evaluate the following

distribution at finite sizes of the imaginary part of λ1, i.e.,

p=(λ1) (x) := 〈δ(x−=(λ1(A)))〉A , (6.13)

where by 〈〉A, as in Eq. (6.2), we denote the ensemble average over the space A of random

matrices A, which here is Model A. In Fig. 6.8, p=(λ1) (x) is plotted for antagonistic

matrices of finite size N = 5000.

Figure 6.8: Histograms of the imaginary part =(λ1) of the leading eigenvalue λ1 in
antagonistic matrices defined on Erdős-Rényi graphs (Model A) with mean degrees c = 2
(blue) and c = 4 (yellow). Results shown are obtained from diagonalising 103 matrices
of size N = 5000. The thick vertical line at =(λ1) = 0 has height Prob[λ1 ∈ R]/δ,
with δ = 0.1 the width of the intervals in the histogram. Continuous lines are gamma
distributions, see Eq. (6.14), fitted to the histograms [fitted parameters are α = 3.04 and
β = 3.31 (blue) and α = 1.53 and β = 4.35 (yellow)].

From finite N results, as shown in Fig. 6.8, we get an independent estimate of the

typical =(λ∗1) (see Appendix A.9 for a more detailed finite size study) by identifying it
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with the mode of a gamma distribution

γ(x;α, β) = (1− π<)
βαxα−1e−βx

Γ(α)
, (6.14)

fitted on the histogram of non real values =(λ1), with Γ(α) the gamma function and

β, α ∈ R+ two fitting parameters.

We study now the typical value =(λ∗1) as a function of the mean degree c, that we

obtained from both the theory for N → ∞, and from the estimate at finite N , as

explained above. Figure 6.9 shows that these two independent methods give compatible

results on the typical value of antagonistic random matrices, although strong finite size

effects affect the estimates of =(λ∗1) from direct diagonalization data, since as discussed

above the imaginary part of the leading eigenvalue has strong fluctuations. We study

more in detail the distributions p(=(λ1)) at different sizes in Appendix A.9. Remarkably,

↑
ccrit

Figure 6.9: Imaginary part of the typical value =(λ∗1) of the leading eigenvalue λ1 as a
function of the mean degree c for antagonistic matrices defined on Erdős-Rényi graphs
(Model A). Red crosses denote =(λ∗1) in the limit of N → ∞ computed with the cavity
method (see Sec.6.1), while the solid line is a guide to the eye. Unfilled markers denote
=(λ∗1) obtained from directly diagonalising 103 matrices of a given size N as shown in
Fig. 6.8. Results shown are for c > 1 since Erdős-Rényi graphs do not have a giant
component when c < 1.

we find that =(λ∗1) exhibits a continuous phase transition, in the limit N → ∞, as a

function of the mean degree c. In particular, Fig. 6.9 shows that there exists a critical

ccrit such that =(λ∗1) converges as N → ∞ towards zero for c > ccrit and to a non-zero

value for c < ccrit. Such continuous transition corresponds to a continuous deformation

of the support whose effect is the appearance of a reentrant behaviour below a critical

value ccrit of the mean degree. We have quantified the reentrance effect seen in Fig. 5.5,
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which systematically activates below the critical value ccrit, and becomes stronger and

stronger when approaching the percolation transition at c = 1.

In the next section, we explore more in detail another very important consequence of

such continuous transition, at the level of the dynamics of large complex systems in the

vicinity of fixed points. Indeed, as discussed in Ch. 1, the imaginary part of the leading

eigenvalue determines how a complex system dynamically recovers from a perturbation

at fixed points.

6.7 Dynamical oscillations for large antagonistic systems

Here we present the implications that the continuous phase transition shown in Fig. 6.9

has on the dynamics, in the vicinity of stable fixed points (see Ch. 1), of complex systems

of large size N . In light of the conditions on the imaginary part of the leading eigenvalue

in Eq. (1.15) and Eq. (1.16), by assuming that we are in the vicinity of a stable fixed

point, the critical ccrit ≈ 2, 7 separates a phase characterised by small mean degrees,

where large and stable antagonistic systems typically oscillate towards the fixed point

after a small perturbation, from a phase characterised by larger connectivities, where

large antagonistic systems relax monotonically to the fixed point.

To illustrate this behaviour, we study the time dependence of the vector ~y(t), repre-

senting the deviation from a stable fixed point, within the following linearised dynamics

∂t~y = −d ~y + A~y, (6.15)

where d is a diagonal matrix where we assume for simplicity that all diagonal elements

are equal to d, and A is an antagonistic matrix of Model A. We assume that

d > <(λ1(A)), (6.16)

which guarantees the fixed point ~y = ~0 is stable. Figure 6.10 illustrates the distinction

between the dynamics at c = 2 < ccrit and c = 4 > ccrit by plotting trajectories of ~y as

a function of t for three different matrix realisations A drawn from the Model A. Since

~y(t) is a vector in a high dimensional space, we plot its projection ~y(t) · ~y(0)/|~y(0)|2 on

the initial state, for which we have set all entries equal to one, i.e., ~y(0) = (1, 1, . . . , 1)T .

We observe a clear qualitative difference between the c = 2 and c = 4 trajectories of

~y(t): for c = 2 the trajectory is reminiscent of a harmonic oscillator in the underdamped

regime while for c = 4 the trajectory is reminiscent of a harmonic oscillator in the over

damped regime.

We make now a careful analysis of the different timescales involved in the linearised

dynamics in Eq. (6.15) of the relaxation towards the stable fixed point. Indeed, as

shown in Appendix A.1, the long term dynamics is governed by three timescales. First,
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Figure 6.10: Plot of ~y(t) · ~y(0)/|~y(0)|2 as a function of t for three different realisations
of antagonistic matrices A drawn from Model A with N = 104, and with c = 2 or c = 4
as denoted in the legend. We have chosen matrix realisations such that the =(λ1(A))
(numerical values reported in the figure) correspond to the typical values of =(λ1) in
Fig. 6.8.

the timescale τrel that a stable system needs to relax to its fixed point is given by

τrel :=
1

d−<(λ1)
, (6.17)

where λ1 = λ1(A) is the leading eigenvalue of the matrix A. The spectral gap <(λ1)−
<(λ2),1 where <(λ2) denotes the second largest value of the real parts of the eigenvalues

of A, sets a second important timescale, i.e., the transient timescale τgap

τgap :=
1

<(λ1)−<(λ2)
. (6.18)

As shown in Appendix A.1, the long time dynamics is dominated by the leading eigen-

value if and only if

τrel & τgap. (6.19)

In other words, if τrel is smaller than τgap, then the system relaxes to the fixed point too

fast for the mode associated to the leading eigenvalue to be visible, since the contribution

of more than one mode, associated to eigenvalues λi such that <(λi) > 2<(λ1)− d, will

be visible at the same time eigenvalues will dominate the dynamics. The third and last

timescale, relevant for the long time dynamics, is given by the oscillations timescale τoscil,

1for simplicity we assume here that there can exist only the complex conjugate λ̄1 that has the same
real part of λ1; otherwise, instead of λ2 one would have λM+1 when there are M > 1 degenerate leading
eigenvalues, up to complex conjugation
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defined by

τoscil :=
1

=(λ1)
. (6.20)

Now, provided that the condition in Eq. (6.19) is satisfied, the leading eigenvalue,

and in particular its imaginary part =(λ1), distinguishes two scenarios, as follows

~y(t) :

NO oscillations, if τoscil � τrel;

Oscillations, if τoscil � τrel.
(6.21)

In words, the dynamical vector ~y(t) shows simple exponential recovery to the fixed point

if τoscil is much larger than τrel; otherwise, ~y(t) shows an oscillatory dynamics during

relaxation towards equilibrium if τoscil is much smaller than τrel.

For large systems, where the spectral gap is expected to be small and vanishing in the

limit N →∞, the condition in Eq. (6.19) can be obtained only at the verge of instability,

i.e. for d − <(λ1) even smaller than the spectral gap (hence large τrel). In this setting,

systems with λ1 typically real, or that due to finite size fluctuations of =(λ1) can have

a large but finite τoscil, will mostly present a non-oscillatory relaxation dynamics. This

occurs for antagonistic systems characterised by mean degree c > ccrit. For example,

in Fig. 6.10 we show two realisations with c = 4: the dashed red line represents an

instance with a real leading eigenvalue λ1, and with a spectral gap of 0.03 (τgap ≈ 30);

the yellow dot-dashed line has a complex leading eigenvalue with a non-zero, but small,

imaginary part (τoscill ≈ 10), due to finite size fluctuations as discussed above, and with

a spectral gap of 0.02 (τgap = 50). In this example already a τrel = 40 is enough to have

the dominating mode to emerge at around t = 60, after a short transient. Note that

some oscillation is still visible in the antagonistic realisation characterised by a complex

leading eigenvalue, but with a timescale τrel . τgap. The oscillations are expected to

disappear completely for N → ∞, as they are originated by finite size fluctuations of

the λ1.

On the contrary, antagonistic systems with c = 2 < ccrit are characterised by a finite

typical =(λ∗1) in the large size limit, and most of the times they be characterised by

τoscil � τrel. Provided that the condition in Eq. (6.19)is satisfied, these systems will

typically present evident oscillatory dynamics in the relaxation towards the fixed points

as in the example of Fig. 6.10 where the gap is 0.02, τgap = 50 and again we have set

τrel = 40.

Remarkably, evidences of similar oscillatory recovery of the fixed point after a per-

turbation has been observed in ecosystems [Arnoldi et al., 2018; Hermann and Touboul,

2012], and in the context of neural networks [Massimini et al., 2005; Rogasch and Fitzger-

ald, 2013], suggesting a potential relation with the dynamical results presented here for

antagonistic matrices.



Chapter 7

Conclusions and perspectives

In this thesis we shed new light on the interplay between complexity and stability.

By taking inspiration from the ecosystems on food webs, we modelled the Jacobian of

the dynamics of complex systems with sparse random matrices on random graphs with

predator-prey, competitive or mutualistic interactions. We referred to the antagonistic

ensemble when only predator-prey interactions are present, and to the mixture ensemble

when one allows for all the three kinds of interactions, in given proportions. More in

detail, we assumed that the off-diagonal part A of the Jacobian of the dynamics evaluated

at the fixed points is approximated by sparse random matrices with pairwise correlated

interactions, while the diagonal elements of the Jacobian are assumed to be positive real

numbers to guarantee the stability of the fixed points in the absence of interactions. For

simplicity, we assumed also the diagonal elements to be all equal to d. A first approach

to the study of the dynamical behaviour is to infer the stability properties of the fixed

points of the dynamics. In the random matrix approach, the leading eigenvalue of A

governs the stability properties of the fixed points. In particular, if its real part is finite

in the infinite size limit, then there can exist a large enough but finite value of d that

guarantees the stability of the fixed points in the presence of interactions. Vice versa, if

the real part of the leading eigenvalue of A is not finite in the infinite size limit, then

there does not exist a finite value of d that is large enough to guarantee the stability of

the fixed points. We found unexpected results on the stability properties of fixed points

of complex systems, under the assumptions on their Jacobian that we mentioned above.

These results significantly distinguish from both dense random matrices, characterised

by the absence of a network structure, and sparse random matrices that are symmetric

or oriented. As we showed in this thesis, such differences emerge in at least three aspects,

that we summarise below.

7.1 The three main results

Here we summarise the three main results obtained in this thesis.
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7.1.1 Large antagonistic systems can be stable, while mixture can not

The first question we answered is whether infinite sparse systems with pairwise corre-

lated interactions can be stable or not. We found that the fixed points of large dynamical

antagonistic systems can be stable, while the ones modelled with mixture matrices be-

come unstable almost surely for large enough systems. More specifically, we showed

that the real part of the leading eigenvalue λ1 is finite for infinitely large antagonistic

matrices, while it diverges with the system size in mixture matrices (see Fig. 6.2 and

Fig. 6.3). Remarkably, it is sufficient a non-zero fraction of non predator-prey interac-

tions This result for antagonistic systems comes as surprise as large complex systems are

typically unstable, as discussed in Ch. 1. Indeed, there are two mechanisms for which

the instability can emerge. First, the leading eigenvalue of dense matrices diverges with

probability one with the system size when the variance of the interactions is independent

of the system size, for any kind of interactions [Allesina and Tang, 2012; May, 1972].

Second, it is known that the leading eigenvalue of undirected random graphs defined

with prescribed degree distribution with unbounded support diverges almost surely for

large graphs [Chung et al., 2004]. Such divergence is reflected in symmetric and sparse

random matrices, where the spectral distribution displays Lifshitz tails that extend on

the real axis [Kühn, 2008; Rodgers and Bray, 1988].

We can provide a simple explanation of the stability of infinitely large antagonistic

matrices. This explanation is based on the fact that all the eigenvalues of antagonistic

tree matrices lie on the imaginary axis, as one can verify with examples of finite trees.

Therefore, antagonistic systems on finite trees are stable when they are stable in the

absence of interactions, independently from the supports of the degree distribution and

the interactions strength being bounded or not. Accordingly, the antagonistic ensemble

defines locally a dynamical system that is stable because they are locally treelike. In

contrast, in a mixture model with a small percentage of interactions with same sign,

i.e., mutualistic or competitive interactions, and a much larger percentage of predator-

prey interactions, the leading eigenvalue of finite trees has unbounded real part when

either the degree distribution or the coupling have unbounded support. This translates

into the fact that for any fixed value d > 0 infinitely large mixture matrices contains

almost surely a local neighbourhood whose leading eigenvalue is larger than d, i.e., they

are unstable with probability one. The theoretical results that we obtained for the

stability of infinite antagonistic and mixture matrices are consistent with their local

neighbourhood properties.

It is important to note that in the sparse models of this thesis the interaction in-

tensities do not depend on the system size N . This is a reasonable assumption for real

networked systems, since the interactions within a local neighbourhood are insensitive in

first approximation to a change of the whole system size, while keeping the mean degree

fixed. On the other side, one can rescale the interactions in any model by a function of

the system size, so that the leading eigenvalue can stay finite in the infinite size limit.
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The specific function depends on the model. This approach is done, for example, in dense

systems, to have a compact support of the spectral distribution in the infinite size limit

(see Ch. 1), where in this case the rescaling is given by
√
N . One can use this rescaling

approach to keep the leading eigenvalue finite also in sparse systems. As discussed in

Ch. 1, the leading eigenvalue of undirected graphs scales as O(
√
kmax). The specific

dependence of kmax on the system size N depends on the specific sparse network model,

and in particular on the degree distribution. For example, in the Erdős-Rényi model for

symmetric adjacency matrices this dependence is known analytically (see Eq. (1.39)) in

the finite connectivity regime, consequently it provides the rescaling of the interactions

that would make the leading eigenvalue finite. In regards to the sparse models studied in

this thesis, we have empirically found that the scaling with N of the leading eigenvalue of

mixture matrices of Model B is given by logN (see Fig. 6.2). It would be interesting to

have an analytic formula for the leading eigenvalue of mixture matrices that can confirm

this behaviour.

7.1.2 Influence of network topology on the leading eigenvalue

The second question we wanted to understand is how the local network topology affects

the stability of large antagonistic systems. First, we showed that the mean degree of

a graph has always destabilising effect on the system stability, as it was first shown

in dense graphs [May, 1972]. Second, we quantitatively characterised the effect of the

degree fluctuations in the network structure, by considering antagonistic matrices on a

random graph ensemble with a prescribed degree distribution that interpolates between

a random regular graph and a Erdős-Rényi one. We found that the leading eigenvalue of

sparse antagonistic matrices decreases upon increasing the degree fluctuations for large

mean degrees, while it increases if the mean degree is small (see Fig. 6.6(a)). Accordingly,

fluctuations in the network topology stabilise antagonistic systems except if the degree

is small. We performed the same analysis on oriented sparse matrices, characterised by

unidirectional links, which is another sparse ensemble known to be stable in the infinite

size limit [Neri and Metz, 2020]. The degree fluctuations have always destabilising effects

on the stability of infinite oriented systems, i.e., we found that the leading eigenvalue

in this case always increases upon increasing these fluctuations (see Fig. 6.6(b)). The

opposite trends between antagonistic and oriented ensembles that have been observed

in the dependence of the leading eigenvalue on the degree fluctuations suggest that the

stabilising effects due to the degree fluctuations in the network topology depend on the

nature of the interactions.
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7.1.3 Phase transition on the imaginary part of the leading eigenvalue for

antagonistic systems

Finally, we analysed how antagonistic and mixture sparse systems respond dynamically

to a perturbation in proximity of a stable fixed point. Remarkably, we found that

large antagonistic systems with small values of the mean degree typically display an

oscillatory relaxation towards the fixed points after a perturbation (see Fig. 6.10). This

phenomenon is a direct consequence of a reentrance effect in the spectrum of large

antagonistic matrices for small enough mean degrees, where the leading eigenvalue is

typically complex (see Fig. 5.5). Instead, for large mean degrees the leading eigenvalue

of large antagonistic matrices is typically real. The reentrance effect is a surprising

feature of the antagonistic sparse ensemble, since for non-symmetric random matrices

the leading eigenvalue is typically real (for symmetric ensembles is trivially real always).

For example, as discussed in Ch. 1, it is real in the dense and dilute regimes, where it holds

the elliptic law [Allesina and Tang, 2012]; for directed and sparse random graphs with

i.i.d. interactions [Neri and Metz, 2020], and for general sparse non-symmetric random

matrices with i.i.d. entries [Allesina and Tang, 2012; Amir et al., 2016; Metz et al., 2019;

Rogers and Pérez Castillo, 2009]. In addition, the results on the imaginary part of the

leading eigenvalue for antagonistic matrices persist in the infinite size limit, where the

leading eigenvalue remains finite, as we discussed above. Indeed, such peculiar dynamical

behaviour of the antagonistic model characterises a continuous phase transition for the

imaginary part of the typical value of the leading eigenvalue as a function of the mean

degree c, with a critical value ccrit that separates a phase where the leading eigenvalue

is complex to one where it is real (see Fig. 6.9). At variance, large mixture matrices

have typically a monotonic recovery to a fixed point after a perturbation. Indeed, in

this case the leading eigenvalue is with probability one real for finite but large mixture

matrices, even for small mean degree (see Fig. 6.7). This behaviour for mixture matrices

is due to the appearance of extended tails in the spectrum on the real axis (see Fig. 5.9),

which are responsible also for the divergence of the leading eigenvalue that we discussed

above. These tails are reminiscent of Lifshitz tails in the spectra of symmetric and

sparse random matrices [Bapst and Semerjian, 2011; Khorunzhiy et al., 2006; Slanina,

2012]. Remarkably, our results suggest that a sufficient and necessary condition for

the appearance of these tails is the existence of a non-zero fraction of competitive and

mutualistic interactions. Indeed, the novel oscillatory behaviour for antagonistic matrices

can happen because in this case the spectra do not develop extended tails on the real

axis.

We use simple arguments to derive the functional dependence of the imaginary part of

the leading eigenvalue close to the critical point ccrit. Inspired by the theory on continuous

transitions [Landau, 1937], we identify the imaginary part of the leading eigenvalue as an

order parameter, whereas the mean degree plays the role of the temperature. Following

this approach and respecting the symmetries of the spectra of antagonistic matrices



7.2. Future perspectives 121

explored in Ch. 5, we can express the real part of the leading eigenvalue as a function of

ccrit near the critical point as follows, i.e.,

<(λ∗1) = a+ ∆(ccrit − c)(=(λ∗1))2 − b(=(λ∗1))4, (7.1)

where a,∆, b are positive real parameters that up to the leading order are independent

of c. In order to find the maximal value of <(λ∗1) as a function of =(λ∗1), with the other

parameters kept fixed, we evaluate the derivative of Eq. (7.1) with respect to =(λ∗1) and

then set it to zero; this gives the solution =(λ∗1) = 0 for c > ccrit and the following

nontrivial solution for c < ccrit, i.e.,

=(λ∗1) =

√
∆(ccrit − c)

2b
, (7.2)

which describes the leading behaviour of the phase transition close to the critical point

ccrit.

7.2 Future perspectives

We conclude by discussing possible future research perspectives.

7.2.1 Hypotheses relaxation

We discuss now some future research perspectives that can generalise the results of this

thesis, by relaxing some of the assumptions that we used here to obtain them.

First, a possible direction that we think is worth to explore is to relax the assumption

dj = d for any node j for the diagonal part of the Jacobian at the fixed points, as well as to

relax the symmetry of interactions with zero mean, i.e., balanced interactions on average,

(see Eq. (2.9) and Eq. (2.21)). The first would mean to introduce diagonal disorder for

the self-regulation mechanisms in the absence of interactions that in principle can be

different for different species, whereas the second would account, for example in the

case of predator-prey interactions, for different average strength between predators and

preys. In the first case we expect that one would obtain qualitatively equivalent results

for the leading eigenvalue, since the network structure would be unchanged. However, in

the second case we expect from other studies [Allesina and Tang, 2012; Neri and Metz,

2016, 2020] that such an asymmetry would lead to eigenvalue outliers in the spectrum,

which are absent in the balanced case. It is important to understand if the results on the

leading eigenvalue and hence on the stability properties of the fixed points are affected.

In particular, an interesting question is whether the oscillatory to monotonic transition

persists in the non-balanced case.

A second interesting challenge is to go beyond the classical assumption of substituting

the true Jacobian of the dynamics at the fixed points with a random matrix, in order
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to account for more realistic features of the community structure at the fixed points.

Although in the model considered in this thesis we went beyond the classical approach

of random matrix theory by including a sparse network structure and interactions that

are pairwise correlated, such as predator-prey ones, this hypothesis potentially neglects

further structural properties of the fixed point that may be relevant. A possible strategy

is to simulate the non-linearised dynamics on many realisations, and infer properties of

the Jacobian at convergence, where the community is selected dynamically. For example,

for dense models it has been found [Biroli et al., 2018] that in phases characterised by

large variability the specific structure of the original community is preserved, although

with reduced diversity, so that the model in this case remains statistically equivalent with

rescaled parameters. It would be interesting to understand if this statistical equivalence

is also found for the sparse systems that we study.

A third important research question is whether the relaxation of the locally treelike

assumption in the network structure would preserve or not the stability properties that

we showed for antagonistic systems. In particular it would be interesting to include and

quantify the effects of cycles on the leading eigenvalue and hence on stability, as they can

appear in food webs [Dunne et al., 2002a; Williams and Martinez, 2000]. More in detail,

as argued by [Neri and Metz, 2020], for sparse random matrices the distribution of the

leading eigenvalue in the limit of large system size is expected to be a weighted sum

of a delta function at its typical value and a continuous part due to small cycles. The

continuous part is supported on the half real line with the lower bound at the typical

value of the leading eigenvalue. The delta is expected to have the weight ν that is close

to one when there is a giant component, whereas below the percolation threshold the

small cycles give a dominating contribution to the leading eigenvalue, i.e., the weight of

the continuous part of the distribution has weight (1 − ν) is close to one. The results

from direct diagonalization of antagonistic matrices above the percolation threshold (see

Fig. 5.5 and Fig. 6.2) suggest that ν ≈ 1 for this model. It would be interesting to

perform a quantitative study to determine ν first in the antagonistic matrices considered

in this thesis, and second in antagonistic models defined on other sparse graphs that

are sparse but not necessarily locally treelike, and finally to compare them. In this way

one could have a more quantitative characterisation of the effect of small cycles on the

leading eigenvalue and hence on the system stability.

7.2.2 Building upon the current results

We conclude now with future research directions that can build upon the results pre-

sented here or be related to them, that add on the perspectives discussed above.

First, it would be interesting to understand whether the results on the leading eigen-

value and on system stability for the antagonistic and mixture matrices are sensitive to

the choice of the degree distribution and of the interaction strength distribution p̃ in

Eq. (2.7) (antagonistic) and in Eq. (2.13) (mixture). We remark that the theory that
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we developed in Ch. 4 can be applied to the general model defined on random graph

ensemble with a prescribed degree distribution, and characterised by pairwise correlated

interactions. We expect that the change of the distribution of the interaction strength,

in particular by considering ones with unbounded support, as well as considering other

degree distributions, for example the exponential or power law distributions, might intro-

duce strong finite size effects both at the level of direct diagonalization of finite matrices

and of the population dynamics algorithm to solve the theoretical equations for the in-

finite size limit. An important choice that plays a role for the behaviour of the leading

eigenvalue is whether the degree distribution has bounded support or not, since typi-

cally the leading eigenvalue of random graphs scales as O(kmax). For example, mixture

models where both the distributions of the interaction strength and of the degree have

bounded supports could have a finite leading eigenvalue in the infinite size limit. For

antagonistic matrices, the fact that the typical leading eigenvalue converges to a finite

value is suggested to be in the nature of the interactions, and so it could be gener-

alised to other distributions. Confirming this fact would be a signal of universality for

antagonistic ensembles. At the level of the phase transition of the imaginary part of

the leading eigenvalue as a function of the mean degree for antagonistic matrices, it is

difficult to make hypothesis if it can be found also with other distributions, especially at

the level of the degree distribution, since the change of the network topology typically

affects the spectra in the sparse regime: for example, we found that antagonistic random

matrices on random regular graphs have always real leading eigenvalue when there is a

giant component, although in this case it is worth to say that the degrees are restricted

to integer values and that the degree distribution has bounded support with no degree

fluctuations. In the case that such transition is found also on models of antagonistic

matrices defined on other distributions, it can be another signal of universal behaviour

of antagonistic systems.

A second interesting question is whether the phase transition from a non-oscillatory to

an oscillatory behaviour for antagonistic matrices as a function of the mean degree can be

related to a localisation-delocalisation phase transition of their right and left eigenvectors.

Indeed, it is known that the right eigenvectors of directed random graphs localise at

small values of the mean degree [Metz and Neri, 2020], as well as the eigenvectors in

symmetric and sparse random matrices [Kühn, 2008]. Accordingly, the fact that for

small mean degree the leading eigenvalue is typically imaginary for large antagonistic

matrices and in particular the reentrance effect in the spectrum could be related to

the existence of localised eigenstates. If this were the case, such localisation transition

can give insights also on the universality features of the phase transition discovered for

antagonistic matrices in this thesis. In addition, it is known that Lifshitz tails of sparse

and symmetric random matrices correspond to localised states in the spectrum [Kühn,

2008]. Consequently, it would be interesting to understand if the extended tails found

in mixture matrices are associated to such localisation transition.
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A third question is related to the surprising result, summarised above, that degree

fluctuations stabilise antagonistic systems when the mean degree is large enough (see

Fig. 6.6(a)). It would be interesting to study an antagonistic model on a random graph

ensemble defined with a prescribed degree distribution that can have larger values of

the variance, for example a power law distribution, in order to understand whether the

real part of the typical leading eigenvalue could eventually reach the zero value, or it

saturates to a finite value.

A fourth interesting question is to understand for which scaling of f(N) = 1−πA(N)

with the system size N the leading eigenvalue of a mixture ensemble remains finite in

the limit of large N . We first look at this problem in the case of symmetric matrices.

As discussed in Ch. 1, for symmetric and sparse random matrices the leading eigenvalue

is governed by the maximal degree kmax, so the problem can be tackled in this case by

studying the maximal degree. As discussed above, this quantity depends on the specific

ensemble, and in particular on the degree distribution. In particular, if one knows its

scaling with N , as in the case of symmetric adjacency matrices of the Erdős-Rényi

model, then one can rescale accordingly the interactions in order to compensate for the

divergence behaviour. In the case of non symmetric matrices there exist no results that

relate the leading eigenvalue to the maximal degree, and therefore the problem is harder

to study.

Finally, one can study the spectral properties on specific network realisations of

ecosystems, neural networks, or other complex systems, that can be compared with our

theoretical predictions. Interestingly, oscillations in the dynamical recovery towards fixed

points are found in several contexts in real-world systems, suggesting a possible relation

with the theoretical results that we predicted. For example, oscillatory responses are

found as a response to perturbations in the context of the brain activity during sleep

phases [Massimini et al., 2005; Rogasch and Fitzgerald, 2013], as well as in oscillatory

phases in large ecosystems [Arnoldi et al., 2018; Hermann and Touboul, 2012].



Appendix A

Appendices

We end this thesis with a set of appendices, where we present the technical, i.e., mathe-

matical and numerical, tools that we implemented to derive the results obtained in the

main chapters of the thesis. Appendix A.1 reviews the derivation of the stability criteria

given by Eqs. (1.13)-(1.16). In Appendix A.2 we expose in more detail the theorems for

the universal laws in random matrix theory (RMT), presented in Sec. 1.3 and in Sec. 1.5.

Appendix A.3 explains deeper and step by step the assumptions within the definition

of the antagonistic ensemble in Ch. 2, and in Appendix A.4 we present explicitly the

formulas for the generic moments of the probability distributions of the antagonistic and

mixture ensemble. In Appendix A.5 we derive the formula for the empirical spectral

density in terms of the resolvent of a matrix, that we used in Ch. 3. Appendix A.6 shows

the derivation of Cauchy-Pompeiu formula, which is a generalisation of the Cauchy in-

tegral formula in complex analysis, that we used to derive the formula for the empirical

spectral density in Appendix A.5. In Appendix A.7 we derive the inverse of a block

matrix in terms of Schur complements, i.e., the Schur formula, that we used in Ch. 3.

Appendix A.8 revise the percolation theory for the existence of giant components in

undirected and directed graphs, and present a study on how the size of the largest con-

nected component depends on graph topology, both for undirected and directed graphs.

Finally, Appendix A.9 presents a finite size study of the leading eigenvalue of random

antagonistic matrices and mixture matrices.
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A.1 Leading eigenvalue: stability criterion and frequency of

oscillations

Here we show that the leading eigenvalue λ1 of A governs the long time dynamics of ~y(t),

i.e., in the limit t� 1. In particular, we derive the conditions given by Eqs. (1.13) and

(1.14) for the stability of linearised dynamics of complex systems and the conditions given

by Eqs. (1.15) and (1.16) for the oscillations in the dynamical response to a perturbation

in the vicinity of fixed points.

We order the eigenvalues of the N ×N matrix A such that

<(λ1) ≥ <(λ2) ≥ . . . ≥ <(λN), (A.1)

where if two consequent eigenvalues, say λj and λj+1, have the same real part, then we

use the convention that =(λj) ≥ =(λj+1).

We assume here that the matrix A is diagonalisable so that it can be decomposed as

A =
N∑
j=1

λj ~Rj
~L†j, (A.2)

where ~Rj is a right eigenvector associated with λj, ~Lj is a left eigenvector associated with

λj, and ~L†j denotes the complex conjugate of ~Lj. We normalise left and right eigenvectors,

such that,
~Rj · ~Lk = δj,k, (A.3)

for all j, k ∈ {1, 2, . . . , N}.
Substitution of Eq. (A.2) in Eq. (1.10) yields for dj = d,

~y(t) = e−dt
N∑
j=1

eλjt[~Lj · ~y(0)]~Rj. (A.4)

Hence, in the limit t→∞, we obtain

~y(t) = e(<(λ1)−d)t

[
M∑
j=1

ei=(λj)t[~Lj · ~y(0)]~Rj +O
(
e(<(λM+1)−<(λ1))t

)]
, (A.5)

where M denotes the number of eigenvalues for which <(λ1) = <(λ2) = . . . = <(λM).

From Eq. (A.5) both the stability conditions, given by Eqs. (1.13) and (1.14), and the

conditions for oscillations in ~y(t), given by Eqs. (1.15) and (1.16), readily follow. In

particular, Eq. (A.5) set the timescales discussed in Sec. 6.7.

The conditions Eqs. (1.13)-(1.16) also apply when A is nondiagonalisable. However,

in this case we cannot employ the eigendecomposition Eq. (A.2) and we should instead

rely on a Jordan decomposition, see Ref. [Neri and Metz, 2020].
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A.2 Random Matrix theory: theorems for the universal laws

We discuss in this appendix the main theorems in RMT that establish the universal laws

(see Sec. 1.3).

Given the spectrum in Eq. (1.11), an important mathematical object is the empirical

spectral measure1 µA (see for example [Götze et al., 2015; Naumov, 2013; Nguyen and

O’Rourke, 2015]), which is the following discrete probability measure on C, defined on

a subset E

µA(E) :=
1

N
|{1 ≤ i ≤ N : λi(A) ∈ E}|, with E ∈ B(C), (A.6)

where B(C) is a Borel σ-algebra of C, i.e., for example, E is an open subset of C, and

where |{}| denotes the cardinality of the set {}. When the matrices A are random,

i.e drawn from a probability distribution on CN×N , µA is a random discrete probability

measure on C, i.e. it is a random variable taking values in the space of discrete probability

measures on C. We observe that the empirical spectral density in Eq. (1.19) is the density

associated to the measure in Eq. (A.6), i.e., [Billingsley, 1986]

µA(E) =

∫
E

ρA(z) dx dy, with E ∈ B(C), (A.7)

where dx dy is the (two-dimensional) Lebesgue measure in the complex plane, with

z = x+ iy.

A fundamental problem in RMT is to determine the limiting spectral measure µ, if

it exists, and under which hypotheses, of the sequence of measures µA/
√
N , as the size

N of the random matrix tends to infinity. We observe than when µ exists, typically

it is deterministic, whereas µA are random objects, and this fact is an example of self-

averaging objects in disordered systems. As discussed in Sec. 1.3, the fundamental object

in RMT, on which the universal laws are expressed, is the limiting distribution ρ, which

is the (deterministic) density associated to the (deterministic) measure µ, similarly to

Eq. (A.7).

The theorems that we present in this appendix are on the convergence of the empirical

spectral measure defined in Eq. (A.6). More in detail, a sequence of measures µA/
√
N is

said to converge to a measure µ if, for every test function φ : C→ C that is continuous

and compactly supported in C, the difference of the Lebesgue integral of φ with respect

to the measures µA/
√
N and µ, i.e.,

∆φµ :=

∫
C
φ(z) dµA/

√
N −

∫
C
φ(z) dµ (A.8)

converges to zero when N → ∞. We mention here two ways that the difference in

1this object can be found [Tao and Vu, 2010; Wood, 2012] also under the name of empirical spectral
distribution.
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Eq. (A.8) can converge. First, the convergence in probability, which happens when

lim
N→∞

Prob [|∆φµ| ≥ ε] = 0, (A.9)

for every ε > 0. Second, the almost sure (also named as almost everywhere or with

probability one) convergence, which is given if, with probability one, the difference ∆φµ

converges to zero for all φ, i.e.,

Prob
[

lim
N→∞

|∆φµ| = 0
]

= 1, (A.10)

which is a stronger condition than Eq. (A.9), i.e., it typically implies convergence in

probability.

We consider in the next section the case of dense random matrices.

A.2.1 Dense Matrices

We consider first the Hermitian random matrices, for which the universal law is given

by Eq. (1.20). We state here the most recent version of the theorem for the dense

semi-circular law, i.e., under weakest hypotheses.

Theorem 1 (Dense semi-circular law [Bai, 1999]). Let ζ be a real random variable, and

let ξ be a complex random variable with variance one. For each N ≥ 1, assume A to

be a N ×N Hermitian matrix whose entries on or above the diagonal are independent.

Further assume that the diagonal entries are i.i.d. copies of ζ and those above the diagonal

are i.i.d. copies of ξ. Then the empirical spectral density of the rescaled matrix A/
√
N

converges almost surely (and in probability) to the semi-circular law in Eq. (1.20) as

N →∞.

As for non-Hermitian matrices A with independent and identical distributed (i.i.d.) en-

tries Aij, the empirical spectral measure of A/
√
N approaches the distribution for the

uniform probability measure on the unit disk in the complex plane in Eq. (1.21) as N

goes to infinity, a phenomenon known in the literature as the circular law. The dense

(i.e., non-sparse) circular law has been proven in many special cases by many authors,

starting from [Mehta, 1967] (Gaussian case), [Girko, 1985, 2004], [Edelman, 1988], [Gini-

bre, 1965] (real Gaussian case), [Bai and Silverstein, 2010; Bai, 1997] [continuous case

with bounded (2+δ)-th moment, for δ > 0], [Götze and Tikhomirov, 2007] (sub-Gaussian

case) and [Götze and Tikhomirov, 2007] (bounded (2 + δ)-th moment, for δ > 0), [Pan

and Zhou, 2010] (bounded 4-th moment), [Tao and Vu, 2008] (bounded (2 + δ)-th mo-

ment, for δ > 0). The following theorem 2 is the current best result, due to [Tao and

Vu, 2010], requiring only zero mean and unit variance (see also [Tao and Vu, 2009]).

Theorem 2 (Dense circular law [Tao and Vu, 2010]). Let ξ be a complex random variable

with mean zero and variance one. For each N ≥ 1, assume that the entries of A are
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i.i.d. copies of ξ. Then the empirical spectral measure of the rescaled matrix A/
√
N

converges almost surely (and in probability) to a measure with density that satisfies the

circular law in Eq. (1.21) as N →∞.

There have been recently interests in generalising Theorem 2 to random matrix en-

sembles where the finite variance hypothesis is relaxed [Bordenave et al., 2011].

For a general class of matrices {A}N≥1 satisfying the following condition A.2.1, we

state below the theorem for the elliptic law, as formulated by [Naumov, 2013], requiring

finite fourth moment. and satisfying the following condition:

Definition A.2.1. (Condition for the elliptic law.) Let (u, l) be a random vector in R2

where both u and l have mean zero and variance one. Let {(Aij, Aji)} be an infinite

double array of random variables on R. For each N ≥ 1 we define the random N × N
matrix A = (Aij)1≤i,j≤N . The sequence of random matrices {A}N≥1 is said to satisfy the

condition for the elliptic law with atom variables (u, l) if the following conditions hold:

(i) (Independence): {Aii : i ≥ 1}∪{(Aij, Aji) : 1 ≤ i < j} is a collection of independent

random elements;

(ii) (Common distribution): each pair (Aij, Aji) : 1 ≤ i < j is an i.i.d. copy of (u, l) —

pairs independent and identically distributed — ;

(iii) (Flexibility of the main diagonal): the diagonal elements {Aii : i ≥ 1} are i.i.d. with

mean zero and finite variance.

Theorem 3 (Dense elliptic law [Naumov, 2013]). Let {A}N≥1 be a sequence of real

random matrices that satisfy condition in Def. A.2.1 with atom variables (u, l) where

〈ul〉 = τ where −1 < τ < 1. Also, assume that 〈u4〉, 〈l4〉 < ∞. Then the empirical

spectral measure of the rescaled matrix A/
√
N converges in probability to a measure with

density that satisfies the elliptic law with parameter τ in Eq. (1.22) as N →∞.

The hypothesis of finite fourth moment has been weaken and the theorem generalised

for complex matrices in Refs. [Götze et al., 2015; Nguyen and O’Rourke, 2015]. Moreover,

in the light of universality principle [Tao and Vu, 2010], [Wood, 2012], it has been

conjectured [Nguyen and O’Rourke, 2015] that the elliptic theorem continues to hold

when 〈|u|2〉 = 〈|l|2〉 = 1 and 〈ul〉 = τ̃ , where τ̃ is a complex number such that |τ̃ | < 1.

A.2.2 Dilute matrices

The mathematical literature in dilute random matrices is much less rich than in dense

matrices. However, here we state the theorem on the circular law for dilute random

matrices; the case of sparse matrices with α = 0 is an exception.
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Theorem 4 (Dilute circular law [Wood, 2012]). Let 0 < α ≤ 1 be a constant, and

let Jij be a real2 random variable with mean zero and variance one, ∀i, j = 1, . . . , N .

Let A be the random matrix in Eq. (1.42) with the random adjacency matrix C as in

Eq. (1.31) with p as in Eq. (1.33). Then the empirical spectral measure of A/
√
pN with

p as in Eq. (1.33) converges in probability to the uniform distribution on the unit disk; in

other words, the density of the empirical spectral measure converges to the circular law

in Eq. (1.21).

2it can be complex, and the theorem is still valid
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A.3 Assumptions in the definition of the antagonistic ensemble

Here we make explicit the assumptions needed to define the antagonistic ensemble in

Sec. 2.1.2, determined by Eq. (2.7), starting from Eq. (2.1), which is the model for

sparse random matrices with pairwise correlated weights. We show first the most general

antagonistic ensemble that one can study with the model in the Eq. (2.1). Then, we

build progressively the definition of the antagonistic ensemble as in Eq. (2.7), which is

the one used in this thesis to model antagonistic matrices.

The generic joint probability density of the antagonistic ensemble is given by

p(u, l) = pA(u, l) := α p2(u, l)θ(−ul), (A.11)

with ∫
R2

du dl pA(u, l) =

∫
R2

du dl p2(u, l) = 1, (A.12)

where p2(u, l) is a general joint probability density with support on R2. The theta func-

tions, defined in Eq. (2.8), account for the sign constraints of predator-prey interactions.

The factor α accounts for normalisation of pA, and it can depend on the symmetry prop-

erties of p2 (for example, if p2(u, l) = p2(−u, l) or p2(u, l) = p2(u,−l) for u, l ∈ R then

α = 2). We observe that the model in the Eq. (2.1) admits an internal symmetry for

node labelling order: the choice of ordering (i, j) in (Jij, Jji) is not physical (internal

permutation symmetry of the model). This translates into the fact that the configura-

tion (u, l), with ul < 0, must be equivalent to the configuration (l, u). In other words,

if for example in the couple (i, j) i is a predator of j, and j is a prey of i, in a random

network model as in the Eq. (2.1), it is possible relabel the pair so that j is a predator of

i, and i is a prey of j. Before relabelling, the interaction of the pair (i, j) is represented

by (u, l) with u > 0, l < 0; after relabelling, the interaction of the same pair (i, j) is

represented by (u′, l′) with u′ = l < 0, l′ = u > 0. Therefore, the probability p2 admits a

symmetry for (u, l) → (l, u), i.e., p2(u, l) = p2(l, u), which we call internal permutation

symmetry. Because of the definition in Eq. (A.11), this condition is reflected on pA, i.e.,

pA(u, l) = pA(l, u) and, for general joint p from the model in Eq. (2.1).

We observe that this assumption of symmetry does not imply that the probability of

being a predator coincides with the probability of being a prey. Indeed, the first quantity

is 〈θ(u) + θ(l)〉pA , with pA as in Eq. (A.11), which is equal to 2〈θ(u)〉pA for the symmetry

of p2 just discussed. The second quantity is 〈θ(−u) + θ(−l)〉pA = 2〈θ(−u)〉pA , which is

generally different from 2〈θ(u)〉pA (similarly, the average strength of predator 2〈uθ(u)〉pA
and prey −2〈uθ(−u)〉pA are generally different). However, these quantities become equal

with the assumption p2(u, l) = p2(−l,−u), which we call predator-prey symmetry. Since

we are interested in the role of the sign constraint in the model, we assume for simplicity

that the correlation between the random variables u, l holds only at the level of their
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signs, and not of their magnitudes. Therefore, Eq. (A.11) can be simplified into

pA(u, l) = α p1(u)p1(l)θ(−ul), (A.13)

where p1 is a probability density with support on R, normalised to one. Finally, we

assume p1 to be symmetric in R, reflecting the fact we do not distinguish between the

magnitudes of different kinds of interaction, i.e., between the strength of predators and

preys: p1(x) = p1(−x), with x a real number. With these symmetry properties, it is

easy to verify that

α = 2. (A.14)

Now we can define from p1 a probability density p̃ with positive support ([0,∞)) and

normalised to one such that

2p1(x) = p̃(|x|), (A.15)

from which we can obtain finally the joint probability density of antagonistic matrices

in Eq. (2.7)
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A.4 Formulas for the moments of the antagonistic and mixture

ensembles

Here we want to express the moments of the joint probabilities p(u, l) with support on

R2 in terms of the moments of the auxiliary probability distribution p̃ with support on

R+, in the Eqs. (2.7), (2.14) and (2.13).

As for the antagonistic ensemble, the generic moment for the joint p(u, l) = pA(u, l)

in Eq. (2.7) reads

〈umln〉pA =
1

2
〈um〉p̃ 〈l

n〉p̃ [(−1)m + (−1)n] , (A.16)

with m,n integer numbers. In particular from Eq. (A.16) we have

〈
u2m+1

〉
pA

= 0, (A.17)〈
u2m
〉
pA

=
〈
u2m
〉
p̃
, (A.18)〈

u2m+1l2n+1
〉
pA

= −
〈
u2m+1

〉
p̃

〈
l2n+1

〉
p̃
, (A.19)

which hold similarly also for 〈ln〉pA . From Eqs. (A.17)-(A.19) we have that the variance

of pA(u, l) reads 〈
u2
〉
pA
−
�
�
��>

0
〈u〉2pA =

〈
u2
〉
p̃
, (A.20)

while the covariance of pA(u, l) reads

〈ul〉pA −����
��:0

〈u〉pA 〈l〉pA = −〈u〉p̃ 〈l〉p̃ . (A.21)

Similarly, the generic moment for the joint p(u, l) = pCM(u, l) in Eq. (2.14) reads

〈umln〉pCM = 〈um〉p̃ 〈l
n〉p̃
[
πM + (1− πM)(−1)m+n

]
, (A.22)

with m,n integer numbers.

As for the mixture ensemble, the generic moment for the joint p(u, l) = pM(u, l) in

Eq. (2.13) reads

〈umln〉pM = 〈um〉p̃ 〈l
n〉p̃
[
πA

2
((−1)m + (−1)n) +

(
1− πA

) (
πM + (1− πM)(−1)m+n

)]
,

(A.23)

with m,n integer numbers. From Eqs. (A.22) and (A.23) we have that the first moment

(m = 1 and n = 0) is

〈u〉pM = 2(1− πA)

(
πM − 1

2

)
〈u〉p̃ , (A.24)

while the second moment

〈
u2
〉
pM

=
[
πA + (1− πA)

(
πM + (1− πM)

)] 〈
u2
〉
p̃

=
〈
u2
〉
p̃
. (A.25)
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From Eqs. (A.24) and (A.25) the variance of pM(u, l) reads

〈
u2
〉
pM
− 〈u〉2pM =

〈
u2
〉
p̃
− 4

(
1− πA

)2
(
πM − 1

2

)2

〈u〉2p̃ , (A.26)

which correctly recovers the variance of pA in Eq. (A.20) when πA = 1, while the covari-

ance of pM(u, l) reads

〈ul〉pM − 〈u〉pM 〈l〉pM = 〈u〉p̃ 〈l〉p̃

[
1− 2πA − 4(1− πA)2

(
πM − 1

2

)2
]
, (A.27)

which correctly recovers the covariance of pA in Eq. (A.21) when πA = 1.
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A.5 Derivation of the formula for the empirical spectral density

in terms of the resolvent

In this appendix we derive the formula Eq. (3.2) for the empirical spectral density of a

matrix A in Eq. (1.19) in terms of the resolvent of a matrix.

First, we observe that the Eq. (1.19) is a distributional equation, i.e., it needs to be

interpreted as action on a space of test functions (see, for example, [Vladimirov, 1979]).

We consider here the space of smooth (see Appendix A.6.1 for the definition) functions

and with compact support D ⊂ C, for which the action of distributions is represented by

complex integrals in D. Accordingly, given a smooth function φ with compact support

D, such that it contains the spectrum (defined in Eq. (1.11)), i.e., σ(A) ⊂ D, Eq. (1.19)

translates into the complex integral [Reed et al., 1980], with z = x+ iy,

∫
D

dx dy ρA(z)φ(z) =
1

N

N∑
j=1

∫
D

dx dy δ(z − λj(A))φ(z) =
1

N

N∑
j=1

φ(λj(A)), (A.28)

=
1

N

N∑
j=1

(
δλj(A), φ

)
, (A.29)

where dxdy is the (two-dimensional) Lebesgue measure in the complex plane, and where

we introduced the following compact notation to express the action, though Lebesgue

integration, of the distribution ψ on the test function φ in the compact support D, i.e.,

(ψ, φ) :=

∫
D

dx dy ψ(z)φ(z), (A.30)

and we denoted in Eq. (A.29) the delta distribution in the complex plane that is centred

in λj(A) by δλj(A). The Eq. (A.28) expresses also the usefulness of the empirical spectral

density, in the sense that by integrating φ with respect to the empirical spectral density

ρA, one obtains the arithmetic average of φ evaluated at the eigenvalues of A.

We now proceed with the derivation of Eq. (3.2). We observe that A = UTNU−1,

by Schur’s decomposition of a general matrix A, where U is a unitary matrix and TN

is upper triangular with diagonal elements equal to the eigenvalues λj(A). Accordingly,

given the cyclicality of the trace operator and some elementary matrix operations (see

for example [Petersen and Pedersen, 2012]), we have

Tr [GA(z)] = Tr
[
(A− z1N)−1

]
= Tr

[
(TN − z1N)−1

]
=

N∑
j=1

1

λj(A)− z
. (A.31)

In order to prove Eq. (3.2), we observe that, similarly to Eq. (1.19), also Eq. (3.2) is a
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distributional equation, i.e., it needs to be interpreted as an action on a space of test

functions. As above, we consider a test function φ that is smooth and with compact

support D ⊂ C, such that σ(A) ⊂ D. By using Eq. (A.31), and similarly to Eqs. (A.28)-

(A.30), the distributional Eq. (3.2) can be expressed through its action on the test

function φ as follows

− 1

πN

N∑
j=1

(
∂z̄

1

λj(A)− z
, φ

)
=

1

N

N∑
j=1

(
δλj(A), φ

)
. (A.32)

In order to complete the derivation of Eq. (3.2), we prove now Eq. (A.32). This can be

done in two steps. First, the j-th term in the sum in the left hand side can be viewed

within the distributional derivative as

−
(
∂z̄

1

λj(A)− z
, φ

)
=

(
1

λj(A)− z
, ∂z̄φ

)
, (A.33)

since the boundary terms, coming from integration by parts, vanish for test functions on

compact support. Second, the proof is completed by using the Cauchy-Pompeiu formula

(see Appendix A.6) to the test function φ, that with the notation in Eq. (A.30), reads

φ(λj(A)) =
1

π

(
1

λj(A)− z
, ∂z̄φ

)
, (A.34)

= − 1

π

(
∂z̄

1

λj(A)− z
, φ

)
, (A.35)

where we used Eq. (A.33) in Eq. (A.35). Finally, by using Eq. (A.29) on the left hand

side of Eq. (A.35), we have proven Eq. (A.32), from which, as discussed above, the

derivation of Eq. (3.2) is completed.

We observe also that the formula Eq. (A.32), that we have just proven, is equivalent

to the following distributional equation

∂z̄(πz)−1 = δ(z), (A.36)

which, mathematically speaking, is nothing but a representation of the δ in the complex

plane.
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A.6 The Cauchy-Pompeiu formula

In this appendix we derive the Cauchy-Pompeiu formula for complex functions (see for

example Ref. [Fong, 2006a; Henrici, 1986; Hörmander, 1966]), that is the generalisation

to smooth functions of the Cauchy integral formula, which holds for holomorphic func-

tions. We make here the observation (explained in Sec. A.6.1), essential in this section,

that smooth functions are not necessarily holomorphic (complex differentiable), which

translates into the fact that their partial derivative ∂z̄, defined in Eq. (3.3), is generally

non-zero (see Sec. A.6.1.1).

A straightforward way to obtain the Cauchy-Pompeiu formula is by using the Stokes-

Cartan theorem (see below), which is a generalisation of the Stokes theorem, for differ-

ential forms [Fong, 2006b; Nahmad-Achar, 2018].

Theorem 5. (Stokes-Cartan)[Cartan, 1945]. If ω is a (n−1)-form with compact support

on smooth n-dimensional manifold Ω, ∂Ω denotes the boundary of Ω given the induced

orientation, then ∫
Ω

dω =

∫
∂Ω

ω|∂Ω, (A.37)

where the n-form dω is the exterior derivative of ω.

To proceed in the derivation of the Cauchy-Pompeiu formula, we define the 1-form

χ :=
1

z − ζ
dz, with z ∈ C \ {ζ}, (A.38)

which satisfies

dχ = 0, with z ∈ C \ {ζ}, (A.39)

as we show below.

Proposition 1. χ is closed in C \ {ζ}, i.e. dχ = 0.

dχ = d(
1

z − ζ
) ∧ dz +

1

z − ζ�
��

��:0
dz ∧ dz

=

(∂z
1

z − ζ
)dz + (

�
�
�
��>

0

∂z̄
1

z − ζ
)dz̄

 ∧ dz

= − 1

(z − ζ)2�
���

�:0
dz ∧ dz = 0.

With the following we completely characterise the 1-form χ:
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Proposition 2. χ is not exact, i.e.
∫
Cr
χ 6= 0 on a circumference Cr of radius

r > 0 centred in ζ.

Consider the standard parametrisation of Cr given by z(θ) = ζ + reiθ with θ ∈
[0, 2π). Then we have∫

Cr

χ =

∫
Cr

dz

z − ζ
=

∫ 2π

0

d(ζ + reiθ)

ζ + reiθ − ζ
=

∫ 2π

0

reiθ idθ

reiθ
=

∫ 2π

0

idθ = 2πi. (A.40)

This means that here is no function f defined on the complex plane C \ {ζ} such

that df = χ. If χ were exact, say χ = df , we would have (applying Stokes

Theorem)
∫
Cr
χ =

∫
Cr

df = f(z(2π)) − f(z(0)) = f(ζ + r) − f(ζ + r) = 0, since

e2πi = e0 = 1.

In order to derive the Cauchy-Pompeiu formula, we consider a smooth complex-

valued function φ. We consider a compact disk DR ⊂ C, with radius R, that contains ζ,

so that the hypothesis of the Stokes theorem are satisfied. We define the 1-form

ω := φχ, with z ∈ C \ {ζ}, (A.41)

from which we have that

dω = d(φχ) = dφ ∧ χ+ φ��>
0

dχ

= (∂zφ dz + ∂z̄φ dz̄) ∧ dz

z − ζ

=
∂z̄φ

z − ζ
dz̄ ∧ dz, (A.42)

where we used that χ is closed in z ∈ C \ {ζ}.
Now, consider the disk Dr,R obtained by subtracting to DR a small disk Dr of radius

r centred on ζ. We can apply the Stokes-Cartan Theorem 5 to ω in Dr,R ⊂ (C \ {ζ}),
i.e. ∫

Dr,R

dω =

∫
∂Dr,R

ω

=

∫
∂DR

ω −
∫
∂Dr

ω. (A.43)

The contour integral on the small disk reads∫
∂Dr

ω =

∫ 2π

0

φ(ζ + reiθ)

ζ + reiθ − ζ
r deiθ = i

∫ 2π

0

φ(ζ + reiθ)dθ. (A.44)
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By using Eq. (A.42) and Eq. (A.44), Eq. (A.43) becomes∫
Dr,R

∂z̄φ

z − ζ
dz̄ ∧ dz =

∫
∂DR

φ

z − ζ
dz − i

∫ 2π

0

φ(ζ + reiθ)dθ. (A.45)

In the limit of the radius r going to 0, the last contribute on the right of Eq. (A.45) leads

to

i

∫ 2π

0

φ(ζ + reiθ)dθ → i

∫ 2π

0

φ(ζ)dθ = 2πiφ(ζ), (A.46)

since φ(ζ + reiθ) converges to φ(ζ) when r → 0. On the other side, the disk Dr,R fills all

the disk DR when r → 0. So by taking the limit r → 0 we can rewrite Eq. (A.45) as∫
DR

∂z̄φ

z − ζ
dz̄ ∧ dz =

∫
∂DR

φ

z − ζ
dz − 2πiφ(ζ). (A.47)

By inverting now the Eq. (A.47), we obtain the Cauchy-Pompeiu formula, i.e.

φ(ζ) =
1

2πi

∫
∂DR

φ

z − ζ
dz − 1

2πi

∫
DR

∂z̄φ

z − ζ
dz̄ ∧ dz. (A.48)

If φ is a test function on the space of smooth (but not necessarily holomorphic, such

that in general ∂z̄φ 6= 0) complex functions with compact support D ⊂ C, such that the

arbitrary disc DR contains D, we have that the contour integral in Eq. (A.48) vanishes,

so that we have

φ(ζ) = − 1

2πi

∫
D

∂z̄φ

z − ζ
dz̄ ∧ dz, (A.49)

which reduces to the Lebesgue integral, in the support D ⊂ C, with the (bi-dimensional)

measure dxdy, i.e.,

φ(ζ) = − 1

π

∫
D

∂z̄φ

z − ζ
dx dy, (A.50)

as applied in Sec. A.5.



A.6. The Cauchy-Pompeiu formula 140

A.6.1 Smooth complex functions and holomorphic functions

Here we discuss the observation, made in the main text, that complex functions that are

smooth are not necessarily holomorphic, while the converse holds.

First, we consider a complex-valued function φ, i.e., φ : Ω → C, with Ω ⊆ C. φ can be

represented at a given point z = x + iy ∈ C, in terms of its real and imaginary parts,

that we define as follows

φ(z = x+ iy) = u(x, y) + iv(x, y), (A.51)

where u, v are real valued functions. Now we discuss the smoothness and the holomorphic

properties.

Smooth complex functions. The complex function φ in Eq. (A.51) is said to be

smooth when u, v are of class C∞, i.e., the partial derivatives of any order of u, v exist

and are continuous.

Holomorphic functions. Holomorphic and complex-differentiable are synonymousa.

Holomorphic functions are actually infinitely differentiable, and all holomorphic functions

are complex analytic function that equal their own Taylor series, which is a remarkable

result of complex analysis, that is based on the Cauchy integral formula (see, for example,

[Rudin, 1987]). This result also implies that holomorphic functions are smooth.

We remind that a function (real or complex) is differentiable in an open set, by definition,

if and only if the limiting difference quotient is well defined on any given point in the open

set (see, for example, [Hörmander, 1966; Rudin, 1987]). We suppose now that u and v in

Eq. (A.51) are real-differentiable in Ω′. This implies that the partial derivatives of u and

v exist. This is not enough to guarantee φ(z) to be complex-differentiable for any z ∈ Ω.

In terms of the partial derivatives of u and v, the complex-differentiability is a stronger

condition with respect to the real-differentiability. More in detail, other two conditions

on the partial derivatives of u and v are needed for the complex-differentiability. Indeed,

φ(z) is complex-differentiable at z = x+ iy if and only if the partial derivatives of u and

v satisfy the following Cauchy-Riemann equations at z, i.e.,

∂xu = ∂yv (A.52)

∂yu = −∂xv. (A.53)

Since z is arbitrary in Ω, we have that φ is complex-differentiable in Ω if and only if

the partial derivatives of u and v satisfy the Cauchy-Riemann equations in Eq. (A.52),

Eq. (A.53) in Ω.

aIf φ is complex differentiable at every point in an open set Ω, then φ is holomorphic on Ω. φ is
holomorphic on some non-open set Ω if it is holomorphic in an open set containing Ω.
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A.6.1.1 Holomorphicity and explicit dependence on z̄

In this paragraph, in light of the discussion above, we show the equivalence

φ is holomorphic on Ω ⇐⇒ ∂z̄φ = 0 in Ω, with Ω ⊆ C, (A.54)

which we assumed in the main text several times.

We can use the Cauchy-Riemann equations in Eq. (A.52), Eq. (A.53) to show the

equivalence in Eq. (A.54), with the following Proposition.

Proposition 3. Given a complex-valued function φ as in Eq. (A.51), u and v

are real-differentiable, we have that: φ satisfies the Cauchy-Riemann equations in

Eq. (A.52), Eq. (A.53) (and so φ is holomorphic) ⇐⇒ ∂z̄φ = 0 .

This can be shown straightforwardly, as follows

2∂z̄φ = (∂x + i∂y) (u+ iv)

= ∂xu− ∂yv + i(∂xv + ∂yu).

Then one observes that the right hand side is zero if and only if the Cauchy-

Riemann equations are satisfied.
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A.7 Inverse of a block matrix in terms of Schur complements

Here we show how the inverse of a block matrix can be obtained via the Schur com-

plements [Bordenave and Lelarge, 2010; Gallier et al., 2010; Lu and Shiou, 2002; Pe-

tersen and Pedersen, 2012]. Given a general invertible square block matrix of rank 2N

parametrised as follows

A :=

(
a b

c d

)
, (A.55)

where in general the blocks a,b, c,d have different sizes, with a,d square matrices and

invertible. The Schur complements sa of a and sd of d are defined as

sa : = (d− ca−1b)−1, (A.56)

sd : = (a− bd−1c)−1. (A.57)

Accordingly, one way to express the inverse of A in terms of Schur complement sd is

A−1 =

(
a b

c d

)−1

=

(
1 0

−d−1c 1

)(
sd 0

0 d−1

)(
1 −bd−1

0 1

)

=

(
sd −sdbd−1

−d−1csd d−1csdbd−1 + d−1

)
, (A.58)

where the block structure is preserved, and the sizes of the identity and the zero matrices

are related (and constrained) to the size of the matrices a,b, c,d. Other equivalent forms

of the inverse A−1 in terms of the Schur complements sa and sd read

A−1 =

(
sd −a−1bsa

−saca−1 sa

)
(A.59)

=

(
a−1bsaca−1 + a−1 −a−1bsa

−saca−1 sa

)
(A.60)

=

(
a−1bsaca−1 + a−1 −sdbd−1

−d−1csd d−1csdbd−1 + d−1

)
. (A.61)
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A.8 Largest connected components in graphs and comparison

with the leading eigenvalue

We first revisit percolation theory for undirected random graphs [Molloy and Reed, 1998]

and directed random graphs [Dorogovtsev et al., 2001], and subsequently we discuss

potential connections between percolation theory and the leading eigenvalue of random

graphs.

A.8.1 Revision of percolation theory

A.8.1.1 Largest connected component in undirected graphs

Let G = (V,E) be a graph with V a set of vertices and E a set of undirected edges. We

say that a subgraph G′ = (V ′, E ′) of G is connected if for each pair of vertices i ∈ V ′ and

j ∈ V ′ there exists a path of edges that belong to E ′ that connect i to j. The largest

connected component is the largest subgraph G′ of G that is connected, i.e., both the

order |V ′| and the size |E ′| of the subgraph or maximal.

The relative order of the largest connected component is defined by

f(G) =
|V ′|
N

. (A.62)

We consider now undirected, random graphs with a prescribed degree distribution

pdeg(k). We denote the generating function of pdeg(k) by

M̃(x) :=
∞∑
k=0

xkpdeg(k) =
〈
xk
〉
pdeg

(A.63)

where we denote the expectation over the degree distribution pdeg as 〈〉pdeg , with k ∈ N,

and we will also use the generating function

M(x) :=
1

c

〈
k xk

〉
pdeg

=
∂xM̃(x)

c
, (A.64)

where c is the mean degree of pdeg(k).

In the limit N → ∞, the relative order f(G) converges with probability one to a

deterministic value f , which is given by [Molloy and Reed, 1998],

1− f = M̃(y), (A.65)

where y is the smallest nonnegative solution of

y2 = M(y). (A.66)
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Solving Eqs. (A.65-A.66) one finds that

f > 0 if 〈k (k − 2)〉pdeg > 0 (A.67)

and that

f = 0 if 〈k (k − 2)〉pdeg < 0 (A.68)

Hence, the condition

〈k (k − 2)〉pdeg = 0 (A.69)

determines the percolation transition in undirected, random graphs.

A.8.1.2 Largest strongly connected component in directed graphs

Let G = (V,E) be a directed graph with V a set of vertices and E a set of undirected

edges. We say that a subgraph G′ = (V ′, E ′) of G is strongly connected if for each pair

of vertices i ∈ V ′ and j ∈ V ′ there exists a path starting in node j and ending in node

i that follows the edges in E ′, and there exists also a reverse path that starts in node i

and ends in node j. The largest strongly connected component is the largest subgraph

G′ that is strongly connected.

We define the relative order of the largest strongly connected component as

ssc(G) =
|V ′|
N

. (A.70)

Let us consider directed, random graphs with a prescribed degree distribution pd
deg(kin, kout)

of indegrees and outdegrees . Then, in the limit N →∞ it holds that [Dorogovtsev et al.,

2001; Neri and Metz, 2020]

ssc = sin + sout + st − swc, (A.71)

where sin, sout, st and swc are the fraction of nodes that belong to the incomponent,

outcomponent, tendrils and the weakly connected component, respectively. By denoting

the expectation over the degree distribution pd
deg(kin, kout) as 〈〉pddeg , with kin, kout ∈ N, as

in Sec. 4.4.1.2, it holds that

sin = 1−
〈
αkin

〉
pddeg

, (A.72)

sout = 1−
〈
βkout

〉
pddeg

, (A.73)

and

st − swc =
〈
αkin βkout

〉
pddeg
− 1, (A.74)

where a and b are probability that solve (the smallest nonnegative solutions) the equa-

tions

c̃ α =
〈
kout α

kin
〉
pddeg

, (A.75)
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and

c̃ β =
〈
kin β

kout
〉
pddeg

, (A.76)

where c̃ is the mean indegree, equal to the mean outdegree 〈kin〉pddeg = 〈kout〉pddeg = c̃.

Solving Eqs. (A.92-A.76), we obtain that [Dorogovtsev et al., 2001; Neri and Metz,

2020]

ssc > 0 if 〈kin kout〉pddeg > c̃, (A.77)

and

ssc = 0 if 〈kin kout〉pddeg < c̃, (A.78)

Hence, the condition

〈kin kout〉pddeg = c̃, (A.79)

determines the percolation transition of the strongly connected component in directed,

random graphs.

A.8.2 Comparison with the leading eigenvalue

A.8.2.1 Undirected random graphs

Following the theory in Sec. A.8.1.1 in the case of the the degree distribution in Eq. (6.8)

we easily get

M̃(x) = axc + (1− a)e−c(1−x), (A.80)

and

M(x) = axc + (1− a)xe−c(1−x). (A.81)

From Eq. (A.66) we find that y is the smallest non-negative solution of

y2 = ayk + (1− a)ye−c(1−y), (A.82)

which needs to be solved numerically for y and then the solution to be used in Eq. (A.65)

to determine f .

The left hand side of critical condition for the percolation transition in Eq. (A.69) is

〈k (k − 2)〉pdeg = ac(c− 2) + (1− a)(c2 − c)

= c− 1− a, (A.83)

for c 6= 0 and so the critical condition reads

a = c− 1. (A.84)

In the special case of a = 0, corresponding to the Erdős-Rényi ensemble with the Poisson

degree distribution, the percolation transition takes place at c = 1. In Panel (a) of

Fig. A.1, we plot for the relative order f of the largest connected component as a function
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of the variance var(k) of the degree distribution for random graphs with a prescribed

degree distribution given by Eq. (6.8). We obtain that for infinitely large graphs f

decreases monotonically as a function of var(k), even for c = 2. Hence, there is no clear

link between the functional dependencies of f and λ1 as a function of var(k) (compare

Panel (a) of Fig. 6.6 in the main text with Panel (a) of Fig. A.1).

A.8.2.2 Directed random graphs

We consider a random, directed graph with a prescribed degree distribution pd
deg given

by Eq. (4.35). Such a random graph can be constructed by adding unidirectional links

on an undirected graph with degree distribution pdeg(k), as we discussed in Sec. 2.1.1

and shown in Appendix 4.4.1.2. Using Eqs. (4.33)-(4.34) and (4.40)-(4.41), we find that

critical condition (A.79) reads

c

2
= 〈kin kout〉pddeg
= c̃2 (ρ+ 1)

=
1

4
〈k(k − 1)〉pdeg . (A.85)

It follows that if pdeg(k) is given by Eq. (6.8), then the strongly connected component of

the graph percolates when

2c = ac(c− 1) + (1− a)c2

= c2 − ac,

=⇒ a = c− 2, (A.86)

and in particular the relative size ssc of the largest strongly connected component is

larger than zero when a < c− 2. In the special case of an Erdős-Rényi ensemble (a = 0)

with Poisson degree distribution (as in Eq. (1.36)) the strongly connected component

percolates at c = 2. For a random regular graph (a = 1), as in Eq. (5.1), the strongly

connected component percolates at c = 3.

Let us now determine the fraction ssc of nodes in the largest strongly connected

component, as in Eq. (A.92). First, we observe that, since
(
k
n

)
=
(

k
k−n

)
, with n ≤ k, it

follows that pd
deg in Eq. (4.35) is symmetric, i.e.,

pd
deg(kin, kout) = pd

deg(kout, kin). (A.87)
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Accordingly, one has that the Eqs. (A.75),(A.76) are the same equation, i.e.,

α = β

=
2

c

∞∑
k=0

pdeg(k)

2k

k∑
n=0

(
k

n

)
αn(k − n)

=
2

c

〈
1

2k

k∑
n=0

(
k

n

)
αn(k − n)

〉
pdeg

, (A.88)

where we used Eq. (4.35). In order to solve Eq. (A.88), we observe that we can use the

moment generating function g(x = y lnα) in Eq. (4.37) as follows

g(x = y lnα) =
k∑

n=0

(
k

n

)
αny = (1 + αy)k. (A.89)

Accordingly, we can express Eq. (A.88) as

α =
2

c

〈
kg(x = lnα)− g′(x = lnα)

2k

〉
pdeg

=
2

c

〈
k

[(
α + 1

2

)k
− α

2

(
α + 1

2

)k−1
]〉

pdeg

=
2

c

〈
k

(
α + 1

2

)k−1(
α + 1

2
− α

2

)〉
pdeg

=
1

c

〈
k

(
α + 1

2

)k−1
〉
pdeg

. (A.90)

We use now the degree distribution pdeg in Eq. (6.8), so that the average in Eq. (A.90)

reads

α =
1

c

∞∑
k=0

k

(
α + 1

2

)k−1 [
aδk,c + (1− a)e−c

ck

k!

]

=
1

c

[
ac

(
α + 1

2

)c−1

+ (1− a)
∞∑
k=1

e−c
ck

(k − 1)!

(
α + 1

2

)k−1
]

= a

(
α + 1

2

)c−1

+ (1− a)e−cec
α+1
2

= a

(
α + 1

2

)c−1

+ (1− a)ec
α−1
2 , (A.91)

which is an equation for α, that needs to be determined for the smallest non-negative

α ∈ [0, 1]. The solution of Eq. (A.91) can be used to determine the relative size of the

largest strongly connected component, where we now express it in terms of the degree

distribution pdeg in Eq. (6.8). First, by the symmetry in Eq. (A.87), one has that the



A.8. Largest connected components in graphs and comparison with the leading eigenvalue 148

Eqs. (A.72),(A.73) are actually the same equation, i.e., sin = sout so that Eq. (A.92)

simplifies to

ssc = 2sin + st − swc,

= 2− 2

〈(
1 + α

2

)k〉
pdeg

+
〈
αk
〉
pdeg
− 1

= 1 +

〈
αk − 2

(
1 + α

2

)k〉
pdeg

(A.92)

where we used again Eq. (4.35), and where α is the solution of Eq. (A.88). Second, we

have

ssc = 1 +
∞∑
k=0

[
aδk,c + (1− a)e−c

ck

k!

][
αk − 2

(
1 + α

2

)k]

= 1 + a

[
αc − 2

(
α + 1

2

)c]
+ (1− a)e−c

{
∞∑
k=0

(cα)k

k!
− 2

∞∑
k=0

1

k!

[
c(α + 1)

2

]k}

= 1 + a

[
αc − 2

(
α + 1

2

)c]
+ (1− a)

[
ec(α−1) − 2ec

α−1
2

]
. (A.93)

In Panel (b) of Fig. A.1, we plot the relative order ssc as a function of var(k) for

directed graphs pdeg(kin, kout) given by Eq. (4.35), and the degree distribution pdeg in

Eq. (6.8). We find that ssc increases as a function of var(k) for c = 3 and decreases as a

function of var(k) for c = 4. Hence, there is again no direct link between the functional

dependencies of ssc and λ1 on var(k) (compare Panel (b) of Fig. 6.6 in the main text

with Panel (b) of Fig. A.1).
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(a)undirected

(b)directed

Figure A.1: Panel (a): Relative order f of the largest connected component of random
graphs with the prescribed degree distribution given by Eq. (6.8), just as in Fig. 6.6(a).
Lines correspond to theoretical results for infinitely large N obtained from solving
Eqs. (A.65-A.66), while the markers are simulation results for finite N and c = 2; we
have included simulations in order to verify the peculiar discontinuity of f at a = 1.
Panel (b): Relative order ssc of the largest strongly connected component of random,
directed graphs with a joint degree distribution pdeg(kin, kout) given by Eq. (4.35), just
as in Fig. 6.6(b). Lines are theoretical values for infinitely large N obtained from solving
Eqs. (A.92-A.76).
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A.9 Finite size study of the leading eigenvalue

In this appendix we study finite size effects on the determination of the leading eigenvalue

=(λ∗1), and of its distribution. Figure 6.9 shows that finite size effects are significant in

sparse random matrices. Therefore, we analyze here how the distribution p(=(λ1)),

plotted in Fig. 6.8, depends on N .

Figure A.2 presents empirical data for the distribution of =(λ1) in antagonistic ma-

trices with parameters that are the same as in Fig. 6.9, except for the system size N ,

which now takes three values N = 200, N = 1000 and N = 5000. Just as in Fig. 6.9,

we observe that the distribution of =(λ1) consists of two parts and is of the form given

by Eq. (6.11). We make a couple of interesting observations from Fig. A.2. First, we

observe that π< in Eq. (6.10), i.e., the probability that the leading eigenvalue is real, is

independent of N , consistent with the results obtained in Fig. 6.7. A possible explana-

tion for the observed N -independence of π< is that the leading eigenvalue can be real

when the matrix A contains a cycle that induces a feedback loop, that is so strong that

it contributes to the spectrum with a leading eigenvalue. Since for sparse random graphs

the number of cycles of a given fixed length is independent of N — and they persist in

the limit N → ∞ — (as discussed in the main text), and since cycles of finite length

are not accounted for by the cavity method, this explanation is consistent with both

the numerical diagonalization results and the theoretical results obtained in this thesis.

Second, we observe that the mode =(λ∗1) of the continuous part of the distribution de-

creases as a function of N . For c = 4 > ccrit the distribution moves swiftly towards zero

while for c = 2 < ccrit the mode appears to converge to a finite non-zero value, which

is consistent with the phase transition at N →∞ shown in Fig. 6.9 and the conjecture

that the cavity method provides an estimate for the mode of the continuous part of the

distribution of |=(λ1)|.
Figure A.3 plots p(=(λ1)) for mixture matrices, which is the equivalent of Fig. A.2 for

antagonistic matrices. Comparing the distribution in Figs. A.2 and A.3, we see that the

main difference is the behaviour of π<, which rapidly converges to 1 for mixture matrices,

as also shown in Fig. 6.7. As a consequence, for mixture matrices the continuous part of

the distribution p(=(λ1)) disappears for large enough N , which, as shown in Fig. A.3, is

enough already at N ≈ 102.
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(a)c = 2

(b)c = 4

Figure A.2: Distributions of the imaginary part of the leading eigenvalue for antago-
nistic matrices (Model A) with c = 2 [Panel (a)] and c = 4 [Panel (b)]. The thick vertical
line at =(λ1) = 0 has height Prob[λ1 ∈ R]/δ, with δ = 0.1 the width of the intervals
in the histogram. Markers are histograms of imaginary part of the leading eigenvalues
obtained through direct diagonalization of ms = 1000 antagonistic matrices for different
values of N . Continuous lines are obtained by fitting the Gamma distribution on these
data.
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(a)c = 2

(b)c = 4

Figure A.3: Distributions of the imaginary part of the leading eigenvalue mixture
matrices (Model B) with c = 2 and c = 4. The thick vertical line at =(λ1) = 0 has
height Prob[λ1 ∈ R]/δ, with δ = 0.1 the width of the intervals in the histogram. Markers
are histograms of imaginary part of the leading eigenvalues obtained through direct
diagonalization of ms = 1000 mixture matrices and for different values of N . Continuous
lines are obtained by fitting the Gamma distribution on these data. Vertical axes are in
log-scale to make visible the continuous part of the distributions.
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Bordenave, C., Caputo, P., and Chafäı, D. (2011). Spectrum of Non-Hermitian Heavy

Tailed Random Matrices. Communications in Mathematical Physics, 307:513–560.

Bordenave, C. and Lelarge, M. (2010). Resolvent of large random graphs. Random

Structures & Algorithms, 37(3):332–352.

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory

spiking neurons. Journal of computational neuroscience, 8(3):183–208.

Bullmore, E. and Sporns, O. (2009). Complex brain networks: graph theoretical analysis

of structural and functional systems. Nature reviews neuroscience, 10(3):186–198.

Caccioli, F., Barucca, P., and Kobayashi, T. (2018). Network models of financial systemic

risk: a review. Journal of Computational Social Science, 1(1):81–114.
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